12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reaction of haem containing proteins and enzymes with hydroperoxides: the radical view.

      1
      Biochimica et biophysica acta

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the pi-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; alphaTyr42, alphaTrp14, betaTrp15, betaCys93, (alphaTyr24-alphaHis20), all in the alpha- and beta-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.

          Related collections

          Author and article information

          Journal
          Biochim. Biophys. Acta
          Biochimica et biophysica acta
          0006-3002
          0006-3002
          Feb 25 2005
          : 1707
          : 1
          Affiliations
          [1 ] Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom. svist@essex.ac.uk
          Article
          S0005-2728(05)00005-8
          10.1016/j.bbabio.2005.01.004
          15721611
          f3659884-c20a-4bca-8237-9f18cf36b7ed
          History

          Comments

          Comment on this article