15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Natural and Synthetic Polymer Fillers for Applications in 3D Printing—FDM Technology Area

      , , , , ,
      Solids
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This publication summarises the current state of knowledge and technology on the possibilities and limitations of using mineral and synthetic fillers in the field of 3D printing of thermoplastics. FDM technology can be perceived as a miniaturised variation of conventional extrusion processing (a microextrusion process). However, scaling the process down has an undoubtful drawback of significantly reducing the extrudate diameter (often by a factor of ≈20–30). Therefore, the results produced under conventional extrusion processing cannot be simply translated to processes run with the application of FDM technology. With that in mind, discussing the latest findings in composite materials preparation and application in FDM 3D printing was necessary.

          Related collections

          Most cited references268

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            3D bioprinting of tissues and organs.

            Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Poly(lactic acid): plasticization and properties of biodegradable multiphase systems

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SOLIC5
                Solids
                Solids
                MDPI AG
                2673-6497
                September 2022
                September 16 2022
                : 3
                : 3
                : 508-548
                Article
                10.3390/solids3030034
                f2e6df03-bb0b-42ae-b793-d3e2319fd717
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article