9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic–organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Designing hydrogels for controlled drug delivery

          Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodegradable polymeric nanoparticles based drug delivery systems.

            Biodegradable nanoparticles have been used frequently as drug delivery vehicles due to its grand bioavailability, better encapsulation, control release and less toxic properties. Various nanoparticulate systems, general synthesis and encapsulation process, control release and improvement of therapeutic value of nanoencapsulated drugs are covered in this review. We have highlighted the impact of nanoencapsulation of various disease related drugs on biodegradable nanoparticles such as PLGA, PLA, chitosan, gelatin, polycaprolactone and poly-alkyl-cyanoacrylates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.

              Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                GELSAZ
                Gels
                Gels
                MDPI AG
                2310-2861
                December 2021
                September 27 2021
                : 7
                : 4
                : 153
                Article
                10.3390/gels7040153
                34698125
                f2a697dd-1df7-4f1c-8929-64212e2d312c
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article