There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
This is an exploratory study on the Twitter profiles managed by 30 Spanish Communication
journals. The aim is to analyse the profile management, to identify the features of
the most interactive content, and to propose effective practices motivating strategic
management. The management variables considered were the following: the launch date
of the journal and launch of the Twitter profile; published content and frequency
of publication; number of publications in 2016; number of Twitter followers. The identification
of the features of the most interactive tweets was performed in a 150-unit sample,
taking into consideration the following factors: the number of retweets, likes, type
of content (motivation), components forming the content, the date and time of publication,
and origin of the publication (internal or unrelated). The results reveal notable
practices and certain deficiencies in the strategic management of social profiles.
Twitter represents an innovative opportunity in scientific dissemination, and it establishes
an inalienable strategy for creating and maintaining the brand-journal while retaining
the need to strengthen followers’ reciprocity. Other potential uses are suggested.
Background Citations in peer-reviewed articles and the impact factor are generally accepted measures of scientific impact. Web 2.0 tools such as Twitter, blogs or social bookmarking tools provide the possibility to construct innovative article-level or journal-level metrics to gauge impact and influence. However, the relationship of the these new metrics to traditional metrics such as citations is not known. Objective (1) To explore the feasibility of measuring social impact of and public attention to scholarly articles by analyzing buzz in social media, (2) to explore the dynamics, content, and timing of tweets relative to the publication of a scholarly article, and (3) to explore whether these metrics are sensitive and specific enough to predict highly cited articles. Methods Between July 2008 and November 2011, all tweets containing links to articles in the Journal of Medical Internet Research (JMIR) were mined. For a subset of 1573 tweets about 55 articles published between issues 3/2009 and 2/2010, different metrics of social media impact were calculated and compared against subsequent citation data from Scopus and Google Scholar 17 to 29 months later. A heuristic to predict the top-cited articles in each issue through tweet metrics was validated. Results A total of 4208 tweets cited 286 distinct JMIR articles. The distribution of tweets over the first 30 days after article publication followed a power law (Zipf, Bradford, or Pareto distribution), with most tweets sent on the day when an article was published (1458/3318, 43.94% of all tweets in a 60-day period) or on the following day (528/3318, 15.9%), followed by a rapid decay. The Pearson correlations between tweetations and citations were moderate and statistically significant, with correlation coefficients ranging from .42 to .72 for the log-transformed Google Scholar citations, but were less clear for Scopus citations and rank correlations. A linear multivariate model with time and tweets as significant predictors (P < .001) could explain 27% of the variation of citations. Highly tweeted articles were 11 times more likely to be highly cited than less-tweeted articles (9/12 or 75% of highly tweeted article were highly cited, while only 3/43 or 7% of less-tweeted articles were highly cited; rate ratio 0.75/0.07 = 10.75, 95% confidence interval, 3.4–33.6). Top-cited articles can be predicted from top-tweeted articles with 93% specificity and 75% sensitivity. Conclusions Tweets can predict highly cited articles within the first 3 days of article publication. Social media activity either increases citations or reflects the underlying qualities of the article that also predict citations, but the true use of these metrics is to measure the distinct concept of social impact. Social impact measures based on tweets are proposed to complement traditional citation metrics. The proposed twimpact factor may be a useful and timely metric to measure uptake of research findings and to filter research findings resonating with the public in real time.
A number of new metrics based on social media platforms—grouped under the term “altmetrics”—have recently been introduced as potential indicators of research impact. Despite their current popularity, there is a lack of information regarding the determinants of these metrics. Using publication and citation data from 1.3 million papers published in 2012 and covered in Thomson Reuters’ Web of Science as well as social media counts from Altmetric.com, this paper analyses the main patterns of five social media metrics as a function of document characteristics (i.e., discipline, document type, title length, number of pages and references) and collaborative practices and compares them to patterns known for citations. Results show that the presence of papers on social media is low, with 21.5% of papers receiving at least one tweet, 4.7% being shared on Facebook, 1.9% mentioned on blogs, 0.8% found on Google+ and 0.7% discussed in mainstream media. By contrast, 66.8% of papers have received at least one citation. Our findings show that both citations and social media metrics increase with the extent of collaboration and the length of the references list. On the other hand, while editorials and news items are seldom cited, it is these types of document that are the most popular on Twitter. Similarly, while longer papers typically attract more citations, an opposite trend is seen on social media platforms. Finally, contrary to what is observed for citations, it is papers in the Social Sciences and humanities that are the most often found on social media platforms. On the whole, these findings suggest that factors driving social media and citations are different. Therefore, social media metrics cannot actually be seen as alternatives to citations; at most, they may function as complements to other type of indicators.
We analyze the online response to the preprint publication of a cohort of 4,606 scientific articles submitted to the preprint database arXiv.org between October 2010 and May 2011. We study three forms of responses to these preprints: downloads on the arXiv.org site, mentions on the social media site Twitter, and early citations in the scholarly record. We perform two analyses. First, we analyze the delay and time span of article downloads and Twitter mentions following submission, to understand the temporal configuration of these reactions and whether one precedes or follows the other. Second, we run regression and correlation tests to investigate the relationship between Twitter mentions, arXiv downloads, and article citations. We find that Twitter mentions and arXiv downloads of scholarly articles follow two distinct temporal patterns of activity, with Twitter mentions having shorter delays and narrower time spans than arXiv downloads. We also find that the volume of Twitter mentions is statistically correlated with arXiv downloads and early citations just months after the publication of a preprint, with a possible bias that favors highly mentioned articles.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.