8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ca2+ Oscillations, Waves, and Networks in Islets From Human Donors With and Without Type 2 Diabetes

      , , , ,
      Diabetes
      American Diabetes Association

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic islets are highly interconnected structures that produce pulses of insulin and other hormones, maintaining normal homeostasis of glucose and other nutrients. Normal stimulus-secretion and intercellular coupling are essential to regulated secretory responses, and these hallmarks are known to be altered in diabetes. In the current study, we used calcium imaging of isolated human islets to assess their collective behavior. The activity occurred in the form of calcium oscillations, was synchronized across different regions of islets through calcium waves, and was glucose dependent: higher glucose enhanced the activity, elicited a greater proportion of global calcium waves, and led to denser and less fragmented functional networks. Hub regions were identified in stimulatory conditions, and they were characterized by long active times. Moreover, calcium waves were found to be initiated in different subregions and the roles of initiators and hubs did not overlap. In type 2 diabetes, glucose dependence was retained, but reduced activity, locally restricted waves, and more segregated networks were detected compared with control islets. Interestingly, hub regions seemed to suffer the most by losing a disproportionately large fraction of connections. These changes affected islets from donors with diabetes in a heterogeneous manner.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men.

          The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose

            Summary The arrangement of β cells within islets of Langerhans is critical for insulin release through the generation of rhythmic activity. A privileged role for individual β cells in orchestrating these responses has long been suspected, but not directly demonstrated. We show here that the β cell population in situ is operationally heterogeneous. Mapping of islet functional architecture revealed the presence of hub cells with pacemaker properties, which remain stable over recording periods of 2 to 3 hr. Using a dual optogenetic/photopharmacological strategy, silencing of hubs abolished coordinated islet responses to glucose, whereas specific stimulation restored communication patterns. Hubs were metabolically adapted and targeted by both pro-inflammatory and glucolipotoxic insults to induce widespread β cell dysfunction. Thus, the islet is wired by hubs, whose failure may contribute to type 2 diabetes mellitus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The unique cytoarchitecture of human pancreatic islets has implications for islet cell function.

              The cytoarchitecture of human islets has been examined, focusing on cellular associations that provide the anatomical framework for paracrine interactions. By using confocal microscopy and multiple immunofluorescence, we found that, contrary to descriptions of prototypical islets in textbooks and in the literature, human islets did not show anatomical subdivisions. Insulin-immunoreactive beta cells, glucagon-immunoreactive alpha cells, and somatostatin-containing delta cells were found scattered throughout the human islet. Human beta cells were not clustered, and most (71%) showed associations with other endocrine cells, suggesting unique paracrine interactions in human islets. Human islets contained proportionally fewer beta cells and more alpha cells than did mouse islets. In human islets, most beta, alpha, and delta cells were aligned along blood vessels with no particular order or arrangement, indicating that islet microcirculation likely does not determine the order of paracrine interactions. We further investigated whether the unique human islet cytoarchitecture had functional implications. Applying imaging of cytoplasmic free Ca2+ concentration, [Ca2+]i, we found that beta cell oscillatory activity was not coordinated throughout the human islet as it was in mouse islets. Furthermore, human islets responded with an increase in [Ca2+]i when lowering the glucose concentration to 1 mM, which can be attributed to the large contribution of alpha cells to the islet composition. We conclude that the unique cellular arrangement of human islets has functional implications for islet cell function.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Diabetes
                American Diabetes Association
                0012-1797
                December 01 2022
                September 06 2022
                December 01 2022
                September 06 2022
                : 71
                : 12
                : 2584-2596
                Article
                10.2337/db22-0004
                36084321
                f297af1b-97a6-42f4-9748-34d305f20c47
                © 2022

                https://www.diabetesjournals.org/journals/pages/license

                History

                Comments

                Comment on this article