70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly due to dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals a new drug combination to unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability.

          Cell signaling systems that contain positive-feedback loops or double-negative feedback loops can, in principle, convert graded inputs into switch-like, irreversible responses. Systems of this sort are termed "bistable". Recently, several groups have engineered artificial bistable systems into Escherichia coli and Saccharomyces cerevisiae, and have shown that the systems exhibit interesting and potentially useful properties. In addition, two naturally occurring signaling systems, the p42 mitogen-activated protein kinase and c-Jun amino-terminal kinase pathways in Xenopus oocytes, have been shown to exhibit bistable responses. Here we review the basic properties of bistable circuits, the requirements for construction of a satisfactory bistable switch, and the recent progress towards constructing and analysing bistable signaling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation.

            The mammalian translational initiation machinery is a tightly controlled system that is composed of eukaryotic initiation factors, and which controls the recruitment of ribosomes to mediate cap-dependent translation. Accordingly, the mTORC1 complex functionally controls this cap-dependent translation machinery through the phosphorylation of its downstream substrates 4E-BPs and S6Ks. It is generally accepted that rapamycin, a specific inhibitor of mTORC1, is a potent translational repressor. Here we report the unexpected discovery that rapamycin's ability to regulate cap-dependent translation varies significantly among cell types. We show that this effect is mechanistically caused by rapamycin's differential effect on 4E-BP1 versus S6Ks. While rapamycin potently inhibits S6K activity throughout the duration of treatment, 4E-BP1 recovers in phosphorylation within 6 h despite initial inhibition (1-3 h). This reemerged 4E-BP1 phosphorylation is rapamycin-resistant but still requires mTOR, Raptor, and mTORC1's activity. Therefore, these results explain how cap-dependent translation can be maintained in the presence of rapamycin. In addition, we have also defined the condition by which rapamycin can control cap-dependent translation in various cell types. Finally, we show that mTOR catalytic inhibitors are effective inhibitors of the rapamycin-resistant phenotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors.

              We describe a chemical proteomics approach to profile the interaction of small molecules with hundreds of endogenously expressed protein kinases and purine-binding proteins. This subproteome is captured by immobilized nonselective kinase inhibitors (kinobeads), and the bound proteins are quantified in parallel by mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ). By measuring the competition with the affinity matrix, we assess the binding of drugs to their targets in cell lysates and in cells. By mapping drug-induced changes in the phosphorylation state of the captured proteome, we also analyze signaling pathways downstream of target kinases. Quantitative profiling of the drugs imatinib (Gleevec), dasatinib (Sprycel) and bosutinib in K562 cells confirms known targets including ABL and SRC family kinases and identifies the receptor tyrosine kinase DDR1 and the oxidoreductase NQO2 as novel targets of imatinib. The data suggest that our approach is a valuable tool for drug discovery.
                Bookmark

                Author and article information

                Journal
                101231976
                32624
                Nat Chem Biol
                Nat. Chem. Biol.
                Nature chemical biology
                1552-4450
                1552-4469
                16 April 2018
                25 June 2018
                August 2018
                25 December 2018
                : 14
                : 8
                : 768-777
                Affiliations
                [1 ]Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
                [2 ]Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
                [3 ]Department of Medicine, University of California San Francisco, San Francisco, CA, USA
                [4 ]Center for Spatial Systems Biology, Oregon Health and Sciences University, Portland, OR, USA
                [5 ]Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
                Author notes
                Article
                NIHMS959880
                10.1038/s41589-018-0081-9
                6051919
                29942081
                f2934d24-09be-41df-a250-0024bca463ba

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article

                scite_
                81
                2
                74
                0
                Smart Citations
                81
                2
                74
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content469

                Cited by38

                Most referenced authors2,035