6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluorinated Galactoses Inhibit Galactose-1-Phosphate Uridyltransferase and Metabolically Induce Galactosemia-like Phenotypes in HEK-293 Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic defects of human galactose-1-phosphate uridyltransferase ( hGALT) and the partial loss of enzyme function result in an altered galactose metabolism with serious long-term developmental impairment of organs in classic galactosemia patients. In search for cellular pathomechanisms induced by the stressor galactose, we looked for ways to induce metabolically a galactosemia-like phenotype by hGALT inhibition in HEK293 cells. In kinetic studies, we provide evidence for 2-fluorinated galactose-1-phosphate (F-Gal-1-P) to competitively inhibit recombinant hGALT with a K I of 0.9 mM. Contrasting with hepatic cells, no alterations of N-glycoprofiles in MIG (metabolic induction of galactosemia)-HEK293 cells were revealed for an inducible secretory netrin-1 probe by MALDI-MS. Differential fluorescence-activated cell sorting demonstrated reduced surface expression of N-glycosylated CD109, EGFR, DPP4, and r hMUC1. Membrane raft proteomes exhibited dramatic alterations pointing to an affection of the unfolded protein response, and of targeted protein traffick. Most prominent, a negative regulation of oxidative stress was revealed presumably as a response to a NADPH pool depletion during reduction of Gal/F-Gal. Cellular perturbations induced by fluorinated galactoses in normal epithelial cells resemble proteomic changes revealed for galactosemic fibroblasts. In conclusion, the metabolic induction of galactosemia-like phenotypes in healthy epithelial/neuronal cells could support studies on the molecular pathomechanisms in classic galactosemia, in particular under conditions of low galactose stress and residual GALT activity.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method.

          With the advent of complete genome sequences, large-scale functional analyses are generating new excitement in biology and medicine. To facilitate genomewide functional analyses, we developed a high-density cell array with quantitative and automated readout of cell fitness. Able to print at > x 10 higher density on a standard microtiter plate area than currently possible, our cell array allows single-plate screening of the complete set of Saccharomyces cerevisiae gene-deletion library and significantly reduces the amount of small molecules and other materials needed for the study. We used this method to map the relation between genes and cell fitness in response to rapamycin, a medically important natural product that targets the eukaryotic kinase Tor. We discuss the implications for pharmacogenomics and the uncharted complexity in genotype-dependent drug response in molecularly targeted therapies. Our analysis leads to several basic findings, including a class of gene deletions that confer better fitness in the presence of rapamycin. This result provides insights into possible therapeutic uses of rapamycin/CCI-779 in the treatment of neurodegenerative diseases (including Alzheimer's, Parkinson's, and Huntington's diseases), and cautions the possible existence of similar rapamycin-enhanceable mutations in cancer. It is well established in yeast that although TOR2 has a unique rapamycin-insensitive function, TOR1 and TOR2 are interchangeable in the rapamycin-sensitive functions. We show that even the rapamycin-sensitive functions are distinct between TOR1 and TOR2 and map the functional difference to a approximately 120-aa region at the N termini of the proteins. Finally, we discuss using cell-based genomic pattern recognition in designing electronic or optical biosensors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defective galactosylation of serum transferrin in galactosemia.

            The glycosylation of serum transferrin from galactosemic patients with a deficiency of galactose-1-phosphate uridyl transferase (EC 2. 7.7 12) is abnormal but becomes normal after treatment with a galactose-free diet. To understand the structural and biochemical basis of the abnormal glycosylation, transferrin was purified from the serum of untreated and treated galactosemic patients and normal controls and the N-linked glycans analyzed by HPLC. The glycans from normal transferrin consisted predominantly (86%) of the disialylated biantennary complex type. The glycans from untreated galactosemic patients were more heterogeneous and contained four major truncated glycans in addition to a smaller amount (13%) of the disialylated biantennary complex type. The truncated glycans were deficient in galactose and sialic acid and their structures were consistent with a decrease in galactosyltransferase activity in hepatocytes, the probable cells of origin of the transferrin. This is postulated to be due to direct inhibition of the galactosyltransferase activity by the accumulated galactose-1-phosphate or to an effect on the formation of UDP-galactose, the donor substrate in the reaction. After treatment the proportion of the truncated glycans decreased and the proportion of the disialylated biantennary complex type increased, returning almost but never completely to normal, even after prolonged treatment in some cases. There was no clear relationship between the length of treatment and the normalization of glycosylation and the level of galactose-1-phosphate in red blood cells, the usual parameter for monitoring the treatment of galactosemics. It is suggested that the persistence of abnormally glycosylated proteins may contribute to the long-term complications in galactosemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential glycomics of epithelial membrane glycoproteins from urinary exovesicles reveals shifts toward complex-type N-glycosylation in classical galactosemia.

              A variety of genetic variations in the galactose-1-phosphate uridyltransferase (GALT) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm-Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm-Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                03 March 2020
                March 2020
                : 9
                : 3
                : 607
                Affiliations
                [1 ]Institute of Biochemistry II, Medical Faculty, University of Cologne, 50931 Koeln, Germany; verena.janes@ 123456rwth-aachen.de (V.J.); sgrabany@ 123456smail.uni-koeln.de (S.G.)
                [2 ]Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (FUNDP), B-5000 Namur, Belgium; julien.delbrouck@ 123456unamur.be (J.D.); stephane.vincent@ 123456unamur.be (S.P.V.)
                [3 ]Helmholtz Institute for Biomedical Engineering, 52074 Aachen, Germany; j.gottschalk@ 123456biotech.rwth-aachen.de (J.G.); l.elling@ 123456biotech.rwth-aachen.de (L.E.)
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-6258-9058
                Article
                cells-09-00607
                10.3390/cells9030607
                7140460
                32138379
                f274d26e-7adf-44e2-9864-e02549891cf5
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 February 2020
                : 27 February 2020
                Categories
                Article

                classic galactosemia,galactose-1-phosphate uridyltransferase (galt),glycosylation,glycoprotein,membrane rafts

                Comments

                Comment on this article