9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence. We analysed the effect of enriched environment (EE) and visual stimulation (VS) in the RPE/outer retina damage within experimental NE-AMD. Exposure to EE starting 48 h post-SCGx, which had no effect on the choriocapillaris ubiquitous thickness increase, protected visual functions, prevented the thickness increase of the Bruch’s membrane, and the loss of the melanin of the RPE, number of melanosomes, and retinoid isomerohydrolase (RPE65) immunoreactivity, as well as the ultrastructural damage of the RPE and photoreceptors, exclusively circumscribed to the central temporal (but not nasal) region, induced by experimental NE-AMD. EE also prevented the increase in outer retina/RPE oxidative stress markers and decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, EE increased RPE and retinal brain-derived neurotrophic factor (BDNF) levels, particularly in Müller cells. When EE exposure was delayed (dEE), starting at 4 weeks post-SCGx, it restored visual functions, reversed the RPE melanin content and RPE65-immunoreactivity decrease. Exposing animals to VS protected visual functions and prevented the decrease in RPE melanin content and RPE65 immunoreactivity. These findings suggest that EE housing and VS could become an NE-AMD promising therapeutic strategy.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.

          Numerous population-based studies of age-related macular degeneration have been reported around the world, with the results of some studies suggesting racial or ethnic differences in disease prevalence. Integrating these resources to provide summarised data to establish worldwide prevalence and to project the number of people with age-related macular degeneration from 2020 to 2040 would be a useful guide for global strategies. We did a systematic literature review to identify all population-based studies of age-related macular degeneration published before May, 2013. Only studies using retinal photographs and standardised grading classifications (the Wisconsin age-related maculopathy grading system, the international classification for age-related macular degeneration, or the Rotterdam staging system) were included. Hierarchical Bayesian approaches were used to estimate the pooled prevalence, the 95% credible intervals (CrI), and to examine the difference in prevalence by ethnicity (European, African, Hispanic, Asian) and region (Africa, Asia, Europe, Latin America and the Caribbean, North America, and Oceania). UN World Population Prospects were used to project the number of people affected in 2014 and 2040. Bayes factor was calculated as a measure of statistical evidence, with a score above three indicating substantial evidence. Analysis of 129,664 individuals (aged 30-97 years), with 12,727 cases from 39 studies, showed the pooled prevalence (mapped to an age range of 45-85 years) of early, late, and any age-related macular degeneration to be 8.01% (95% CrI 3.98-15.49), 0.37% (0.18-0.77), and 8.69% (4.26-17.40), respectively. We found a higher prevalence of early and any age-related macular degeneration in Europeans than in Asians (early: 11.2% vs 6.8%, Bayes factor 3.9; any: 12.3% vs 7.4%, Bayes factor 4.3), and early, late, and any age-related macular degeneration to be more prevalent in Europeans than in Africans (early: 11.2% vs 7.1%, Bayes factor 12.2; late: 0.5% vs 0.3%, 3.7; any: 12.3% vs 7.5%, 31.3). There was no difference in prevalence between Asians and Africans (all Bayes factors <1). Europeans had a higher prevalence of geographic atrophy subtype (1.11%, 95% CrI 0.53-2.08) than Africans (0.14%, 0.04-0.45), Asians (0.21%, 0.04-0.87), and Hispanics (0.16%, 0.05-0.46). Between geographical regions, cases of early and any age-related macular degeneration were less prevalent in Asia than in Europe and North America (early: 6.3% vs 14.3% and 12.8% [Bayes factor 2.3 and 7.6]; any: 6.9% vs 18.3% and 14.3% [3.0 and 3.8]). No significant gender effect was noted in prevalence (Bayes factor <1.0). The projected number of people with age-related macular degeneration in 2020 is 196 million (95% CrI 140-261), increasing to 288 million in 2040 (205-399). These estimates indicate the substantial global burden of age-related macular degeneration. Summarised data provide information for understanding the effect of the condition and provide data towards designing eye-care strategies and health services around the world. National Medical Research Council, Singapore. Copyright © 2014 Wong et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Müller cells in the healthy and diseased retina.

            Müller glial cells span the entire thickness of the tissue, and ensheath all retinal neurons, in vertebrate retinae of all species. This morphological relationship is reflected by a multitude of functional interactions between neurons and Müller cells, including a 'metabolic symbiosis' and the processing of visual information. Müller cells are also responsible for the maintenance of the homeostasis of the retinal extracellular milieu (ions, water, neurotransmitter molecules, and pH). In vascularized retinae, Müller cells may also be involved in the control of angiogenesis, and the regulation of retinal blood flow. Virtually every disease of the retina is associated with a reactive Müller cell gliosis which, on the one hand, supports the survival of retinal neurons but, on the other hand, may accelerate the progress of neuronal degeneration: Müller cells protect neurons via a release of neurotrophic factors, the uptake and degradation of the excitotoxin, glutamate, and the secretion of the antioxidant, glutathione. However, gliotic Müller cells display a dysregulation of various neuron-supportive functions. This contributes to a disturbance of retinal glutamate metabolism and ion homeostasis, and causes the development of retinal edema and neuronal cell death. Moreover, there are diseases evoking a primary Müller cell insufficiency, such as hepatic retinopathy and certain forms of glaucoma. Any impairment of supportive functions of Müller cells, primary or secondary, must cause and/or aggravate a dysfunction and loss of neurons, by increasing the susceptibility of neurons to stressful stimuli in the diseased retina. On the contrary, Müller cells may be used in the future for novel therapeutic strategies to protect neurons against apoptosis (somatic gene therapy), or to differentiate retinal neurons from Müller/stem cells. Meanwhile, a proper understanding of the gliotic responses of Müller cells in the diseased retina, and of their protective vs. detrimental effects, is essential for the development of efficient therapeutic strategies that use and stimulate the neuron-supportive/protective-and prevent the destructive-mechanisms of gliosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The retinal pigment epithelium in health and disease.

              Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.
                Bookmark

                Author and article information

                Contributors
                ddorfman@fmed.uba.ar
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                4 December 2021
                4 December 2021
                December 2021
                : 12
                : 12
                : 1128
                Affiliations
                [1 ]GRID grid.7345.5, ISNI 0000 0001 0056 1981, Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, ; Buenos Aires, Argentina
                [2 ]GRID grid.412525.5, ISNI 0000 0001 2097 3932, School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, ; Buenos Aires, Argentina
                [3 ]GRID grid.7345.5, ISNI 0000 0001 0056 1981, Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, School of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, ; Buenos Aires, Argentina
                Author information
                http://orcid.org/0000-0002-8070-9620
                http://orcid.org/0000-0002-7967-9866
                Article
                4412
                10.1038/s41419-021-04412-1
                9632251
                34864827
                f266105f-216a-46ec-8a3c-132a708ccf91
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 July 2021
                : 20 October 2021
                : 10 November 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003074, Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina);
                Award ID: PICT 1563, PICT 2731
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100005363, Universidad de Buenos Aires (University of Buenos Aires);
                Award ID: 20020100100678
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100002923, Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council);
                Award ID: PIP0707
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Cell biology
                neurodegeneration,retina
                Cell biology
                neurodegeneration, retina

                Comments

                Comment on this article