71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An ontological approach to describing neurons and their relationships

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The advancement of neuroscience, perhaps one of the most information rich disciplines of all the life sciences, requires basic frameworks for organizing the vast amounts of data generated by the research community to promote novel insights and integrated understanding. Since Cajal, the neuron remains a fundamental unit of the nervous system, yet even with the explosion of information technology, we still have few comprehensive or systematic strategies for aggregating cell-level knowledge. Progress toward this goal is hampered by the multiplicity of names for cells and by lack of a consensus on the criteria for defining neuron types. However, through umbrella projects like the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF), we have the opportunity to propose and implement an informatics infrastructure for establishing common tools and approaches to describe neurons through a standard terminology for nerve cells and a database (a Neuron Registry) where these descriptions can be deposited and compared. This article provides an overview of the problem and outlines a solution approach utilizing ontological characterizations. Based on illustrative implementation examples, we also discuss the need for consensus criteria to be adopted by the research community, and considerations on future developments. A scalable repository of neuron types will provide researchers with a resource that materially contributes to the advancement of neuroscience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.

          The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex.

            Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synapse formation on neurons born in the adult hippocampus.

              Although new and functional neurons are produced in the adult brain, little is known about how they integrate into mature networks. Here we explored the mechanisms of synaptogenesis on neurons born in the adult mouse hippocampus using confocal microscopy, electron microscopy and live imaging. We report that new neurons, similar to mature granule neurons, were contacted by axosomatic, axodendritic and axospinous synapses. Consistent with their putative role in synaptogenesis, dendritic filopodia were more abundant during the early stages of maturation and, when analyzed in three dimensions, the tips of all filopodia were found within 200 nm of preexisting boutons that already synapsed on other neurons. Furthermore, dendritic spines primarily synapsed on multiple-synapse boutons, suggesting that initial contacts were preferentially made with preexisting boutons already involved in a synapse. The connectivity of new neurons continued to change until at least 2 months, long after the formation of the first dendritic protrusions.
                Bookmark

                Author and article information

                Journal
                Front Neuroinform
                Front Neuroinform
                Front. Neuroinform.
                Frontiers in Neuroinformatics
                Frontiers Media S.A.
                1662-5196
                27 April 2012
                2012
                : 6
                : 15
                Affiliations
                [1] 1simpleCenter for Neural Informatics, Structures, & Plasticity and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax VA, USA.
                [2] 2simpleDepartment of Neurobiology, Yale Medical School, New Haven CT, USA
                [3] 3simpleDepartment of Neuroscience, University of California, San Diego CA, USA
                Author notes

                Edited by: Andrew P. Davison, CNRS, France

                Reviewed by: Yann Le Franc, University of Antwerp, Belgium; Phillip Lord, Newcastle University, UK

                *Correspondence: Giorgio A. Ascoli, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, VA 22030, USA. e-mail: ascoli@ 123456gmu.edu
                Article
                10.3389/fninf.2012.00015
                3338117
                22557965
                f208f23f-d7e8-405d-afe0-d0985f8585a8
                Copyright © 2012 Hamilton, Shepherd, Martone and Ascoli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 14 August 2011
                : 04 April 2012
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 28, Pages: 11, Words: 7962
                Categories
                Neuroscience
                Hypothesis and Theory Article

                Neurosciences
                ontology,property,neuron,value,characterization,relationship,part,type
                Neurosciences
                ontology, property, neuron, value, characterization, relationship, part, type

                Comments

                Comment on this article