16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Betaine attenuates chronic alcohol-induced fatty liver by broadly regulating hepatic lipid metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Betaine has previously been demonstrated to protect the liver against alcohol-induced fat accumulation. However, the mechanism through which betaine affects alcohol-induced hepatic lipid metabolic disorders has not been extensively studied. The present study aimed to investigate the effect of betaine on alcoholic simple fatty liver and hepatic lipid metabolism disorders. A total of 36 rats were randomly divided into control, ethanol and ethanol + betaine groups. Liver function, morphological alterations, lipid content and tumor necrosis factor (TNF)-α levels were determined. Hepatic expression levels of diacylglycerol acyltransferase (DGAT) 1, DGAT2, sterol regulatory element binding protein (SREBP)-1c, SREBP-2, fatty acid synthase (FAS), 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase, peroxisome proliferator-activated receptor λ coactivator (PGC)-1α, adiponectin receptor (AdipoR) 1 and AdipoR2 were quantified. Serum and adipose tissue adiponectin levels were assessed using an enzyme-linked immunoassay. The results demonstrated that alcohol-induced ultramicrostructural alterations in hepatocytes, including the presence of lipid droplets and swollen mitochondria, were attenuated by betaine. Hepatic triglyceride, free fatty acid, total cholesterol and cholesterol ester contents and the expression of DGAT1, DGAT2, SREBP-1c, SREBP-2, FAS and HMG-CoA reductase were increased following ethanol consumption, however were maintained at control levels following betaine supplementation. Alcohol-induced decreases in hepatic PGC-1α mRNA levels and serum and adipose tissue adiponectin concentrations were prevented by betaine. The downregulation of hepatic AdipoR1 which resulted from alcohol exposure was partially attenuated by betaine. No significant differences in liver function, TNF-α, phospholipid and AdipoR2 levels were observed among the control, ethanol and ethanol + betaine groups. Overall, these results indicated that betaine attenuated the alcoholic simple fatty liver by improving hepatic lipid metabolism via suppression of DGAT1, DGAT2, SREBP-1c, FAS, SREBP-2 and HMG-CoA reductase and upregulation of PGC-1α.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.

          Peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in the transcriptional control of genes encoding mitochondrial fatty acid beta-oxidation (FAO) enzymes. In this study we sought to determine whether the recently identified PPAR gamma coactivator 1 (PGC-1) is capable of coactivating PPARalpha in the transcriptional control of genes encoding FAO enzymes. Mammalian cell cotransfection experiments demonstrated that PGC-1 enhanced PPARalpha-mediated transcriptional activation of reporter plasmids containing PPARalpha target elements. PGC-1 also enhanced the transactivation activity of a PPARalpha-Gal4 DNA binding domain fusion protein. Retroviral vector-mediated expression studies performed in 3T3-L1 cells demonstrated that PPARalpha and PGC-1 cooperatively induced the expression of PPARalpha target genes and increased cellular palmitate oxidation rates. Glutathione S-transferase "pulldown" studies revealed that in contrast to the previously reported ligand-independent interaction with PPARgamma, PGC-1 binds PPARalpha in a ligand-influenced manner. Protein-protein interaction studies and mammalian cell hybrid experiments demonstrated that the PGC-1-PPARalpha interaction involves an LXXLL domain in PGC-1 and the PPARalpha AF2 region, consistent with the observed ligand influence. Last, the PGC-1 transactivation domain was mapped to within the NH(2)-terminal 120 amino acids of the PGC-1 molecule, a region distinct from the PPARalpha interacting domains. These results identify PGC-1 as a coactivator of PPARalpha in the transcriptional control of mitochondrial FAO capacity, define separable PPARalpha interaction and transactivation domains within the PGC-1 molecule, and demonstrate that certain features of the PPARalpha-PGC-1 interaction are distinct from that of PPARgamma-PGC-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Global burden of alcoholic liver diseases.

            Liver diseases contribute markedly to the global burden of mortality and disease. This paper provides an overview from a global perspective of the contribution of alcohol to liver diseases. The Global Burden of Disease study methodology was used to estimate the burden of alcohol-attributable liver cirrhosis and alcohol-attributable liver cancer in 2010 as measured by deaths and disability adjusted life years (DALYs). This methodology estimates attributable fractions based on alcohol exposure distribution and relative risks associated with different levels of drinking. Globally, in 2010, alcohol-attributable liver cirrhosis was responsible for 493,300 deaths (156,900 female deaths and 336,400 male deaths) and 14,544,000 DALYs (4,112,000 DALYs for women and 10,432,000 DALYs for men), representing 0.9% (0.7% for women and 1.2% for men) of all global deaths and 0.6% (0.4% for women and 0.8% for men) of all global DALYs, and 47.9% of all liver cirrhosis deaths (46.5% for women and 48.5% for men) and 46.9% of all liver cirrhosis DALYs (44.5% for women and 47.9% for men). Alcohol-attributable liver cancer was responsible for 80,600 deaths (14,800 female deaths and 65,900 male deaths) and 2,142,000 DALYs (335,000 DALYs for women and 1,807,000 DALYs for men). The burden of alcohol-attributable liver cirrhosis and liver cancer is high and entirely preventable. Interventions to reduce alcohol consumption are recommended as a population health priority and may range from taxation increases for alcoholic beverages to increases in screening and treatment rates for alcohol use disorders. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

              Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                October 2017
                21 August 2017
                21 August 2017
                : 16
                : 4
                : 5225-5234
                Affiliations
                [1 ]Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
                [2 ]Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan 610000, P.R. China
                Author notes
                Correspondence to: Professor Jing Li or Professor Chengwei Tang, Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail: melody224@ 123456163.com , E-mail: shcqcdmed@ 123456163.com
                Article
                mmr-16-04-5225
                10.3892/mmr.2017.7295
                5647077
                28849079
                f1be3f61-c463-4bfb-b29d-2f54f477f896
                Copyright: © Yang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 13 November 2015
                : 13 June 2017
                Categories
                Articles

                alcoholic fatty liver,betaine,lipids,metabolism,diacylglycerol acyltransferase

                Comments

                Comment on this article