10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stem cells (MSCs) driven gene-directed enzyme prodrug therapy has emerged as a potential strategy for cancer treatment. The tumour-nesting properties of MSCs enable these vehicles to target tumours and metastases with effective therapies. A crucial step in engineering MSCs is the delivery of genetic material with low toxicity and high efficiency. Due to the low efficiency of current transfection methods, viral vectors are used widely to modify MSCs in preclinical and clinical studies. We show, for the first time, the high transfection efficiency (> 80%) of human adipose tissue derived-MSCs (AT-MSCs) using a cost-effective and off-the-shelf Polyethylenimine, in the presence of histone deacetylase 6 inhibitor and fusogenic lipids. Notably, the phenotypes of MSCs remained unchanged post-modification. AT-MSCs engineered with a fused transgene, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) displayed potent cytotoxic effects against breast, glioma, gastric cancer cells in vitro. The efficiency of eliminating gastric cell lines were effective even when using 7-day post-transfected AT-MSCs, indicative of the sustained expression and function of the therapeutic gene. In addition, significant inhibition of temozolomide resistant glioma tumour growth in vivo was observed with a single dose of therapeutic MSC. This study demonstrated an efficient non-viral modification process for MSC-based prodrug therapy.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Progress and problems with the use of viral vectors for gene therapy.

          Gene therapy has a history of controversy. Encouraging results are starting to emerge from the clinic, but questions are still being asked about the safety of this new molecular medicine. With the development of a leukaemia-like syndrome in two of the small number of patients that have been cured of a disease by gene therapy, it is timely to contemplate how far this technology has come, and how far it still has to go.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non viral vectors in gene therapy- an overview.

            Non-viral vectors are simple in theory but complex in practice. Apart from intra cellular and extracellular barriers, number of other challenges also needs to be overcome in order to increase the effectiveness of non-viral gene transfer. These barriers are categorized as production, formulation and storage. No one-size-fits-all solution to gene delivery, which is why in spite of various developments in liposome, polymer formulation and optimization, new compounds are constantly being proposed and investigated. In this review, we will see in detail about various types of non-viral vectors highlighting promising development and recent advances that had improved the non-viral gene transfer efficiency of translating from "Bench to bedside".
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling.

              We determined the molecular mechanism of inhibitory effect of human mesenchymal stem cells (hMSCs) on the growth of human MCF-7 breast cancer cells. Our finding showed that beta-catenin was down-regulated in MCF-7 cells by conditioned media from Z3 hMSCs, and the expression level of dickkopf-1 (Dkk-1) was higher in Z3 cells than that in MCF-7 cells. Neutralization of Dkk-1 and small interference RNA targeting Dkk-1 mRNA in Z3 cells attenuated the inhibitory effect of Z3 cells on MCF-7 cells. Overexpression of Dkk-1 in Z3 cells enhanced the inhibition. Therefore, Dkk-1 secreted by Z3 cells involves the inhibition via the Wnt pathway.
                Bookmark

                Author and article information

                Contributors
                bchhyk@nus.edu.sg
                bchtoohp@nus.edu.sg
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                31 August 2020
                31 August 2020
                2020
                : 10
                : 14257
                Affiliations
                GRID grid.4280.e, ISNI 0000 0001 2180 6431, Department of Biochemistry, , National University of Singapore, ; Singapore, 119260 Singapore
                Article
                71224
                10.1038/s41598-020-71224-2
                7458920
                32868813
                f1b243aa-c56e-4a75-bb2d-ffc12defe439
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 March 2020
                : 23 July 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001474, Singapore-MIT Alliance for Research and Technology Centre;
                Award ID: ING000665-BIO
                Funded by: FundRef http://dx.doi.org/10.13039/501100011744, National University Health System;
                Award ID: NUHSRO/2019/085
                Funded by: National Health Innovation Centre Singapore
                Award ID: NHIC I2D-1908233
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                gene delivery,genetic engineering,cancer
                Uncategorized
                gene delivery, genetic engineering, cancer

                Comments

                Comment on this article