27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Merge in the Human Brain: A Sub-Region Based Functional Investigation in the Left Pars Opercularis

      research-article
      1 , 2 , 1 , 2
      Frontiers in Psychology
      Frontiers Media S.A.
      pars opercularis, clusters, syntax, merge, fMRI

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Language is thought to represent one of the most complex cognitive functions in humans. Here we break down complexity of language to its most basic syntactic computation which hierarchically binds single words together to form larger phrases and sentences. So far, the neural implementation of this basic operation has only been inferred indirectly from studies investigating more complex linguistic phenomena. In the present sub-region based functional magnetic resonance imaging (fMRI) study we directly assessed the neuroanatomical nature of this process. Our results showed that syntactic phrases—compared to word-list sequences—corresponded to increased neural activity in the ventral-anterior portion of the left pars opercularis [Brodmann Area (BA) 44], whereas the adjacently located deep frontal operculum/anterior insula (FOP/aINS), a phylogenetically older and less specialized region, was found to be equally active for both conditions. Crucially, the functional activity of syntactic binding was confined to one out of five clusters proposed by a recent fine-grained sub-anatomical parcellation for BA 44, with consistency across individuals. Neuroanatomically, the present results call for a redefinition of BA 44 as a region with internal functional specializations. Neurocomputationally, they support the idea of invariance within BA 44 in the location of activation across participants for basic syntactic building processing.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing.

          The advent of functional neuroimaging has allowed tremendous advances in our understanding of brain-language relationships, in addition to generating substantial empirical data on this subject in the form of thousands of activation peak coordinates reported in a decade of language studies. We performed a large-scale meta-analysis of this literature, aimed at defining the composition of the phonological, semantic, and sentence processing networks in the frontal, temporal, and inferior parietal regions of the left cerebral hemisphere. For each of these language components, activation peaks issued from relevant component-specific contrasts were submitted to a spatial clustering algorithm, which gathered activation peaks on the basis of their relative distance in the MNI space. From a sample of 730 activation peaks extracted from 129 scientific reports selected among 260, we isolated 30 activation clusters, defining the functional fields constituting three distributed networks of frontal and temporal areas and revealing the functional organization of the left hemisphere for language. The functional role of each activation cluster is discussed based on the nature of the tasks in which it was involved. This meta-analysis sheds light on several contemporary issues, notably on the fine-scale functional architecture of the inferior frontal gyrus for phonological and semantic processing, the evidence for an elementary audio-motor loop involved in both comprehension and production of syllables including the primary auditory areas and the motor mouth area, evidence of areas of overlap between phonological and semantic processing, in particular at the location of the selective human voice area that was the seat of partial overlap of the three language components, the evidence of a cortical area in the pars opercularis of the inferior frontal gyrus dedicated to syntactic processing and in the posterior part of the superior temporal gyrus a region selectively activated by sentence and text processing, and the hypothesis that different working memory perception-actions loops are identifiable for the different language components. These results argue for large-scale architecture networks rather than modular organization of language in the left hemisphere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broca's region revisited: cytoarchitecture and intersubject variability.

            The sizes of Brodmann's areas 44 and 45 (Broca's speech region) and their extent in relation to macroscopic landmarks and surrounding areas differ considerably among the available cytoarchitectonic maps. Such variability may be due to intersubject differences in anatomy, observer-dependent discrepancies in cytoarchitectonic mapping, or both. Because a reliable definition of cytoarchitectonic borders is important for interpreting functional imaging data, we mapped areas 44 and 45 by means of an observer-independent technique. In 10 human brains, the laminar distributions of cell densities were measured vertical to the cortical surface in serial coronal sections stained for perikarya. Thousands of density profiles were obtained. Cytoarchitectonic borders were defined as statistically significant changes in laminar patterns. The analysis of the three-dimensional reconstructed brains and the two areas showed that cytoarchitectonic borders did not consistently coincide with sulcal contours. Therefore, macroscopic features are not reliable landmarks of cytoarchitectonic borders. Intersubject variability in the cytoarchitecture of areas 44 and 45 was significantly greater than cytoarchitectonic differences between these areas in individual brains. Although the volumes of area 44 differed across subjects by up to a factor of 10, area 44 but not area 45 was left-over-right asymmetrical in all brains. All five male but only three of five female brains had significantly higher cell densities on the left than on the right side. Such hemispheric and gender differences were not detected in area 45. These morphologic asymmetries of area 44 provide a putative correlate of the functional lateralization of speech production. Copyright 1999 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE).

              A new three-dimensional imaging technique which is applicable for 3D MR imaging throughout the body is introduced. In our preliminary investigations we have acquired high-quality 3D image sets of the abdomen showing minimal respiratory artifacts in just over 7 min (voxel size 2.7 X 2.7 X 2.7 mm3), and 3D image sets of the head showing excellent gray/white contrast in less than 6 min (voxel size 1.0 X 2.0 X 1.4 mm3).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                27 November 2015
                2015
                : 6
                : 1818
                Affiliations
                [1] 1Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
                [2] 2Berlin School of Mind and Brain, Humboldt-Universität zu Berlin Berlin, Germany
                Author notes

                Edited by: Cedric Boeckx, Catalan Institute for Research and Advanced Studies (ICREA) and Universitat de Barcelona, Spain

                Reviewed by: Narly Golestani, Université de Genève, Switzerland; Evie Malaia, University of Texas at Arlington, USA

                *Correspondence: Emiliano Zaccarella zaccarella@ 123456cbs.mpg.de

                This article was submitted to Language Sciences, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2015.01818
                4661288
                26640453
                f1a7c01d-ad22-431d-89fe-17cf9972ca47
                Copyright © 2015 Zaccarella and Friederici.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 September 2015
                : 10 November 2015
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 67, Pages: 9, Words: 7477
                Funding
                Funded by: European Research Council 10.13039/501100000781
                Award ID: ERC-2010-AdG 20100407
                Funded by: Berlin School of Mind and Brain
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                pars opercularis,clusters,syntax,merge,fmri
                Clinical Psychology & Psychiatry
                pars opercularis, clusters, syntax, merge, fmri

                Comments

                Comment on this article