11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resilience in maize production for food security: Evaluating the role of climate-related abiotic stress in Pakistan

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary purpose of this research is to examine the impact of climate change on maize production in Pakistan. This research studied the impact of climate change on maize production in Pakistan from 1990 to 2020 using the Auto Regressive Distributed Lag (ARDL) technique and draws implications for the future of Pakistan's sustainable agricultural industry. According to ARDL's short-run and long-run analyses, variables such as average temperature (AVEGTP), carbon dioxide (CO2), precipitation (PRPT), and tube well irrigation (TWL) all have a significant short-run and long-run impact on maize yield at the 1 %, 5 %, and 10 % significance levels. The estimated findings were also affirmed through FMOLS and DOLS. The study's key findings indicated that variables such as average temperature, carbon dioxide, precipitation, and tube well irrigation had significant short-run and long-run impacts on maize yield. Climate change's impacts on maize yield underline the crucial need for action to address this global issue and ensure agriculture's future. A recent study has emphasized the significant impact of climate change on Pakistan's maize production, stressing the importance of addressing this global issue for food security. The study recommends selecting crop varieties and managing fertilizer applications based on projected climate change to mitigate the impending crisis. Policymakers can use the study's findings as valuable insights to formulate effective policies that ensure the resilience and sustainability of Pakistan's agricultural industry.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Climate trends and global crop production since 1980.

          Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change impacts on global food security.

            Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Climate variation explains a third of global crop yield variability

              Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                10 November 2023
                November 2023
                10 November 2023
                : 9
                : 11
                : e22140
                Affiliations
                [a ]School of Public Administration, Xiangtan University, PR China. 411105
                [b ]South Asia Research Centre Xiangtan University, PR China. 411105
                [c ]Business School of Xiangtan University, PR China. 411105
                Author notes
                []Corresponding author. anhua7321@ 123456163.com
                [∗∗ ]Corresponding author. School of Public Administration, Xiangtan University, PR China, 411105. nasrullaheconomist@ 123456hotmail.com
                Article
                S2405-8440(23)09348-9 e22140
                10.1016/j.heliyon.2023.e22140
                10685367
                38034722
                f19d9ad1-a749-44f4-b7da-8f29df1ccfc6
                © 2023 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 July 2023
                : 21 October 2023
                : 5 November 2023
                Categories
                Research Article

                maize production,climate change,food security,technology level,sustainable agriculture development

                Comments

                Comment on this article