0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metaxins are core components of mitochondrial transport adaptor complexes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trafficking of mitochondria into dendrites and axons plays an important role in the physiology and pathophysiology of neurons. Mitochondrial outer membrane protein Miro and adaptor proteins TRAKs/Milton link mitochondria to molecular motors. Here we show that metaxins MTX-1 and MTX-2 contribute to mitochondrial transport into both dendrites and axons of C. elegans neurons. MTX1/2 bind to MIRO-1 and kinesin light chain KLC-1, forming a complex to mediate kinesin-1-based movement of mitochondria, in which MTX-1/2 are essential and MIRO-1 plays an accessory role. We find that MTX-2, MIRO-1, and TRAK-1 form another distinct adaptor complex to mediate dynein-based transport. Additionally, we show that failure of mitochondrial trafficking in dendrites causes age-dependent dendrite degeneration. We propose that MTX-2 and MIRO-1 form the adaptor core for both motors, while MTX-1 and TRAK-1 specify each complex for kinesin-1 and dynein, respectively. MTX-1 and MTX-2 are also required for mitochondrial transport in human neurons, indicative of their evolutionarily conserved function.

          Abstract

          Mitochondrial trafficking is carefully regulated and functionally important in neurons. Here, the authors screen C. elegans for abnormal mitochondrial distribution and identify metaxin-1 and -2, which bind Miro and microtubule motor proteins to promote mitochondrial trafficking.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria: in sickness and in health.

          Mitochondria perform diverse yet interconnected functions, producing ATP and many biosynthetic intermediates while also contributing to cellular stress responses such as autophagy and apoptosis. Mitochondria form a dynamic, interconnected network that is intimately integrated with other cellular compartments. In addition, mitochondrial functions extend beyond the boundaries of the cell and influence an organism's physiology by regulating communication between cells and tissues. It is therefore not surprising that mitochondrial dysfunction has emerged as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders. We provide a current view of how mitochondrial functions impinge on health and disease. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration.

            Mitochondria have a number of essential roles in neuronal function. Their complex mobility patterns within neurons are characterized by frequent changes in direction. Mobile mitochondria can become stationary or pause in regions that have a high metabolic demand and can move again rapidly in response to physiological changes. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Research into the mechanisms that regulate mitochondrial transport is thus an important emerging frontier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Floor plate-derived dopamine neurons from hESCs efficiently engraft in animal models of PD

              SUMMARY Human pluripotent stem cells (hPSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of hPSCs into specialized cells such as spinal motoneurons 1 or midbrain dopamine (DA) neurons 2 has been achieved. However, the effective use of hPSCs for cell therapy has lagged behind. While mouse PSC-derived DA neurons have shown efficacy in models of Parkinson’s disease (PD) 3, 4 , DA neurons from human PSCs generally display poor in vivo performance 5 . There are also considerable safety concerns for hPSCs related to their potential for teratoma formation or neural overgrowth 6, 7 Here we present a novel floor plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor plate precursors are derived from hPSCs in 11 days following exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signaling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of hPSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in PD models using three host species. Long-term engraftment in 6-OHDA-lesioned mice and rats demonstrates robust survival of midbrain DA neurons, complete restoration of amphetamine-induced rotation behavior and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into Parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell based therapies in PD.
                Bookmark

                Author and article information

                Contributors
                wfeng@ibp.ac.cn
                xmwang@ibp.ac.cn
                kangshen@stanford.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                4 January 2021
                4 January 2021
                2021
                : 12
                : 83
                Affiliations
                [1 ]GRID grid.418856.6, ISNI 0000 0004 1792 5640, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, ; 15 Datun Road, Beijing, 100101 China
                [2 ]GRID grid.410726.6, ISNI 0000 0004 1797 8419, College of Life Sciences, , University of Chinese Academy of Sciences, ; Beijing, 100049 China
                [3 ]GRID grid.168010.e, ISNI 0000000419368956, Department of Neurosurgery, , Stanford University School of Medicine, Stanford, CA, ; Stanford, CA USA
                [4 ]GRID grid.168010.e, ISNI 0000000419368956, Howard Hughes Medical Institute, Department of Biology, , Stanford University, ; Stanford, CA USA
                Author information
                http://orcid.org/0000-0002-7546-5609
                http://orcid.org/0000-0002-2640-7082
                http://orcid.org/0000-0001-9738-9398
                http://orcid.org/0000-0003-4059-8249
                Article
                20346
                10.1038/s41467-020-20346-2
                7782850
                33397950
                f18e686d-9aac-4d13-9c8b-093cc626a354
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 November 2019
                : 17 November 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 31571061, 31771138, and 31770786
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                microtubules,motor proteins,mitochondria,cellular neuroscience
                Uncategorized
                microtubules, motor proteins, mitochondria, cellular neuroscience

                Comments

                Comment on this article