34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The drug 2-hydroxypropyl-β-cyclodextrin (HPβCD) reduces lysosomal cholesterol accumulation in Niemann-Pick disease, type C (NPC) and has been advanced to human clinical trials. However, its mechanism of action for reducing cholesterol accumulation in NPC cells is uncertain and its molecular target is unknown. We found that methyl-β-cyclodextrin (MβCD), a potent analog of HPβCD, restored impaired macroautophagy/autophagy flux in Niemann-Pick disease, type C1 (NPC1) cells. This effect was mediated by a direct activation of AMP-activated protein kinase (AMPK), an upstream kinase in the autophagy pathway, through MβCD binding to its β-subunits. Knockdown of PRKAB1 or PRKAB2 (encoding the AMPK β1 or β2 subunit) expression and an AMPK inhibitor abolished MβCD-mediated reduction of cholesterol storage in NPC1 cells. The results demonstrate that AMPK is the molecular target of MβCD and its activation enhances autophagy flux, thereby mitigating cholesterol accumulation in NPC1 cells. The results identify AMPK as an attractive target for drug development to treat NPC.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The cellular thermal shift assay for evaluating drug target interactions in cells.

          Thermal shift assays are used to study thermal stabilization of proteins upon ligand binding. Such assays have been used extensively on purified proteins in the drug discovery industry and in academia to detect interactions. Recently, we published a proof-of-principle study describing the implementation of thermal shift assays in a cellular format, which we call the cellular thermal shift assay (CETSA). The method allows studies of target engagement of drug candidates in a cellular context, herein exemplified with experimental data on the human kinases p38α and ERK1/2. The assay involves treatment of cells with a compound of interest, heating to denature and precipitate proteins, cell lysis, and the separation of cell debris and aggregates from the soluble protein fraction. Whereas unbound proteins denature and precipitate at elevated temperatures, ligand-bound proteins remain in solution. We describe two procedures for detecting the stabilized protein in the soluble fraction of the samples. One approach involves sample workup and detection using quantitative western blotting, whereas the second is performed directly in solution and relies on the induced proximity of two target-directed antibodies upon binding to soluble protein. The latter protocol has been optimized to allow an increased throughput, as potential applications require large numbers of samples. Both approaches can be completed in a day.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity.

            The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator of the autophagy-lysosome pathway. The changes in lysosomal function, observed in the rat model as well as in human PD midbrain, were reversed by overexpression of TFEB, which afforded robust neuroprotection via the clearance of α-synuclein oligomers, and were aggravated by microRNA-128-mediated repression of TFEB in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function, and highlight TFEB as a key player in the induction of α-synuclein-induced toxicity and PD pathogenesis, thus identifying TFEB as a promising target for therapies aimed at neuroprotection and disease modification in PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis.

              Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA resulted in correction of their excessive lysosomal storage of LDL cholesterol, thereby defining the critical role of NPC1 in regulation of intracellular cholesterol trafficking. The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                KAUP
                kaup20
                Autophagy
                Taylor & Francis
                1554-8627
                1554-8635
                2017
                14 June 2017
                14 June 2017
                : 13
                : 8
                : 1435-1451
                Affiliations
                [a ]National Center for Advancing Translational Sciences (NCATS), NIH , Bethesda, MD, USA
                [b ]Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
                [c ]National Institute of Child Health and Human Development, NIH , Bethesda, MD, USA
                [d ]Diabetic Cardiovascular Disease Center, Washington University School of Medicine , St. Louis, MO USA
                Author notes
                CONTACT Daniel S. Ory dory@ 123456wustl.edu ; Diabetic Cardiovascular Disease Center, Washington University School of Medicine , 9800 Medical Center Drive, St. Louis MO 20892-3375, USA Juan Marugan maruganj@ 123456mail.nih.gov ; National Center for Advancing Translational Sciences , 9800 Medical Center Drive, Bethesda MD 20892-3375, USA Wei Zheng wzheng@ 123456mail.nih.gov National Center for Advancing Translational Sciences , 9800 Medical Center Drive, Bethesda MD 20892-3375, USA
                Author information
                https://orcid.org/0000-0003-1034-0757
                Article
                1329081
                10.1080/15548627.2017.1329081
                5584846
                28613987
                f18ce66e-093d-46b1-921a-1537d65c3f9b
                This article not subject to US copyright law.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 19 August 2016
                : 28 April 2017
                : 5 May 2017
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 63, Pages: 17
                Categories
                Translational Research Paper

                Molecular biology
                ampk,autophagy flux,drug development,methyl-β-cyclodextrin,molecular target,niemann-pick disease type c

                Comments

                Comment on this article