8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis, X-ray diffraction, and density functional studies of tin(IV) compounds containing a pincer-type SNS ligand

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions.

          We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit and to have good performance for both main-group chemistry and transition metal chemistry. The M06-L functional and 14 other functionals have been comparatively assessed against 22 energetic databases. Among the tested functionals, which include the popular B3LYP, BLYP, and BP86 functionals as well as our previous M05 functional, the M06-L functional gives the best overall performance for a combination of main-group thermochemistry, thermochemical kinetics, and organometallic, inorganometallic, biological, and noncovalent interactions. It also does very well for predicting geometries and vibrational frequencies. Because of the computational advantages of local functionals, the present functional should be very useful for many applications in chemistry, especially for simulations on moderate-sized and large systems and when long time scales must be addressed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions.

            We present a new hybrid meta exchange-correlation functional, called M05-2X, for thermochemistry, thermochemical kinetics, and noncovalent interactions. We also provide a full discussion of the new M05 functional, previously presented in a short communication. The M05 functional was parametrized including both metals and nonmetals, whereas M05-2X is a high-nonlocality functional with double the amount of nonlocal exchange (2X) that is parametrized only for nonmetals. In particular, M05 was parametrized against 35 data values, and M05-2X is parametrized against 34 data values. Both functionals, along with 28 other functionals, have been comparatively assessed against 234 data values:  the MGAE109/3 main-group atomization energy database, the IP13/3 ionization potential database, the EA13/3 electron affinity database, the HTBH38/4 database of barrier height for hydrogen-transfer reactions, five noncovalent databases, two databases involving metal-metal and metal-ligand bond energies, a dipole moment database, a database of four alkyl bond dissociation energies of alkanes and ethers, and three total energies of one-electron systems. We also tested the new functionals and 12 others for eight hydrogen-bonding and stacking interaction energies in nucleobase pairs, and we tested M05 and M05-2X and 19 other functionals for the geometry, dipole moment, and binding energy of HCN-BF3, which has recently been shown to be a very difficult case for density functional theory. We tested eight functionals for four more alkyl bond dissociation energies, and we tested 12 functionals for several additional bond energies with varying amounts of multireference character. On the basis of all the results for 256 data values in 18 databases in the present study, we recommend M05-2X, M05, PW6B95, PWB6K, and MPWB1K for general-purpose applications in thermochemistry, kinetics, and noncovalent interactions involving nonmetals and we recommend M05 for studies involving both metallic and nonmetallic elements. The M05 functional, essentially uniquely among the functionals with broad applicability to chemistry, also performs well not only for main-group thermochemistry and radical reaction barrier heights but also for transition-metal-transition-metal interactions. The M05-2X functional has the best performance for thermochemical kinetics, noncovalent interactions (especially weak interaction, hydrogen bonding, π···π stacking, and interactions energies of nucleobases), and alkyl bond dissociation energies and the best composite results for energetics, excluding metals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm.

              Quantitative analysis of molecular surface is a valuable technique for analyzing non-covalent interaction, studying molecular recognition mode, predicting reactive site and reactivity. An efficient way to realize the analysis was first proposed by Bulat et al. (J. Mol. Model., 16, 1679), in which Marching Tetrahedra (MT) approach commonly used in computer graphics is employed to generate vertices on molecular surface. However, it has been found that the computations of the electrostatic potential in the MT vertices are very expensive and some artificial surface extremes will be presented due to the uneven distribution of MT vertices. In this article, we propose a simple and reliable method to eliminate these unreasonably distributed surface vertices generated in the original MT. This treatment can save more than 60% of total analysis time of electrostatic potential, yet the loss in accuracy is almost negligible. The artificial surface extremes are also largely avoided as a byproduct of this algorithm. In addition, the bisection iteration procedure has been exploited to improve accuracy of linear interpolation in MT. The most appropriate grid spacing for surface analysis has also been investigated. 0.25 and 0.20 bohr are recommended to be used for surface analysis of electrostatic potential and average local ionization energy, respectively.
                Bookmark

                Author and article information

                Journal
                Structural Chemistry
                Struct Chem
                Springer Nature
                1040-0400
                1572-9001
                February 2015
                August 2014
                : 26
                : 1
                : 189-198
                Article
                10.1007/s11224-014-0481-8
                f152a1fc-22e6-4c82-aaf5-8e734faab9f6
                © 2015
                History

                Comments

                Comment on this article