20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A small-angle X-ray scattering study of alpha-synuclein from human red blood cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          α-synuclein (α-syn) is the main component of Lewy bodies, which are neuropathological hallmarks of patients with Parkinson’s disease. As it has been controversial whether human α-syn from erythrocytes exists as a tetramer under physiological conditions, we tried solving this issue by the small-angle X-ray solution scattering method. Under two different conditions (high ionic strength with a Tris buffer and low ionic strength with an ammonium acetate buffer), no evidence was found for the presence of tetramer. When comparing erythrocyte and recombinant α-syn molecules, we found no significant difference of the molecular weight and the secondary structure although the buffer conditions strongly affect the radius of gyration of the protein. The results indicate that, even though a stable tetramer may not be formed, conformation of α-syn depends much on its environment, which may be the reason for its tendency to aggregate in cells.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies.

          Lewy bodies and Lewy neurites are the defining neuropathological characteristics of Parkinson's disease and dementia with Lewy bodies. They are made of abnormal filamentous assemblies of unknown composition. We show here that Lewy bodies and Lewy neurites from Parkinson's disease and dementia with Lewy bodies are stained strongly by antibodies directed against amino-terminal and carboxyl-terminal sequences of alpha-synuclein, showing the presence of full-length or close to full-length alpha-synuclein. The number of alpha-synuclein-stained structures exceeded that immunoreactive for ubiquitin, which is currently the most sensitive marker of Lewy bodies and Lewy neurites. Staining for alpha-synuclein thus will replace staining for ubiquitin as the preferred method for detecting Lewy bodies and Lewy neurites. We have isolated Lewy body filaments by a method used for the extraction of paired helical filaments from Alzheimer's disease brain. By immunoelectron microscopy, extracted filaments were labeled strongly by anti-alpha-synuclein antibodies. The morphologies of the 5- to 10-nm filaments and their staining characteristics suggest that extended alpha-synuclein molecules run parallel to the filament axis and that the filaments are polar structures. These findings indicate that alpha-synuclein forms the major filamentous component of Lewy bodies and Lewy neurites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease.

            Two mutations in the gene encoding alpha-synuclein have been linked to early-onset Parkinson's disease (PD). alpha-Synuclein is a component of Lewy bodies, the fibrous cytoplasmic inclusions characteristic of nigral dopaminergic neurons in the PD brain. This connection between genetics and pathology suggests that the alpha-synuclein mutations may promote PD pathogenesis by accelerating Lewy body formation. To test this, we studied alpha-synuclein folding and aggregation in vitro, in the absence of other Lewy body-associated molecules. We demonstrate here that both mutant forms of alpha-synuclein (A53T and A30P) are, like wild-type alpha-synuclein (WT), disordered in dilute solution. However, at higher concentrations, Lewy body-like fibrils and discrete spherical assemblies are formed; most rapidly by A53T. Thus, mutation-induced acceleration of alpha-synuclein fibril formation may contribute to the early onset of familial PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies.

              Lewy bodies (LBs) are hallmark lesions of degenerating neurons in the brains of patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Recently, a point mutation in the gene encoding the presynaptic alpha-synuclein protein was identified in some autosomal-dominantly inherited familial PD pedigrees, and light microscopic studies demonstrated alpha-synuclein immunoreactivity in LBs of sporadic PD and DLB. To characterize alpha-synuclein in LBs, we raised monoclonal antibodies (MAbs) to LBs purified from DLB brains and obtained a MAb specific for alpha-synuclein that intensely labeled LBs. Light and electron microscopic immunocytochemical studies performed with this MAb as well as other antibodies to alpha-and beta-synuclein showed that alpha-synuclein, but not beta-synuclein, is a component of LBs in sporadic PD and DLB. Western blot analyses of highly purified LBs from DLB brains showed that full-length as well as partially truncated and insoluble aggregates of alpha-synuclein are deposited in LBs. Thus, these data strongly implicate alpha-synuclein in the formation of LBs and the selective degeneration of neurons in sporadic PD and DLB.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                29 July 2016
                2016
                : 6
                : 30473
                Affiliations
                [1 ]Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
                [2 ]Japan Synchrotron Radiation Research Institute (JASRI) , SPring-8, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan
                [3 ]Institute for Protein Research, Osaka University , 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
                [4 ]Center for Research on Green Sustainable Chemistry, Tottori University , 4-101 Koyamacho-minami, Tottori, Tottori 680-8550, Japan
                [5 ]Department of Neurotherapeutics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
                Author notes
                Article
                srep30473
                10.1038/srep30473
                4965831
                27469540
                f12d39dc-06da-49e5-a608-35334bf888ee
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 May 2016
                : 05 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article