15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Conserved and Particular Roles of the R2R3-MYB Regulator FhPAP1 from Freesia hybrida in Flower Anthocyanin Biosynthesis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthocyanin biosynthesis is mainly controlled by MYB–bHLH–WD40 (MBW) complexes that modulate the expression of anthocyanin biosynthetic genes (ABGs). The MYB regulators involved in anthocyanin biosynthesis arose early during plant evolution and thus might function divergently in different evolutionary lineages. Although the anthocyanin-promoting R2R3-MYB regulators in eudicots have been comprehensively explored, little consensus has been reached about functional discrepancies versus conservation among MYB regulators from different plant lineages. Here, we integrated transcriptome analysis, gene expression profiles, gain-of-function experiments and transient protoplast transfection assays to functionally characterize the monocot Freesia hybrida anthocyanin MYB regulator gene FhPAP1, which showed correlations with late ABGs. FhPAP1 could activate ABGs as well as TT8-clade genes FhTT8L, AtTT8 and NtAN1 when overexpressed in Freesia, Arabidopsis and tobacco, respectively. Consistently, FhPAP1 could interact with FhTT8L and FhTTG1 to form the conserved MBW complex and shared similar target genes with its orthologs from Arabidopsis. Most prominently, FhPAP1 displayed higher transactivation capacity than its homologs in Arabidopsis and tobacco, which was instantiated in its powerful regulation on ABGs. Moreover, we found that FhPAP1 might be the selected gene during the domestication and rapid evolution of the wild Freesia species to generate intensive flower pigmentation. These results showed that while the MBW complex was highly evolutionarily conserved between tested monocot and core eudicot plants, participating MYB regulators showed functional differences in transactivation capacity according to their activation domain and played important roles in the flower coloration domestication and evolution of angiosperms.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

            We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana

              The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.
                Bookmark

                Author and article information

                Contributors
                Journal
                Plant and Cell Physiology
                Oxford University Press (OUP)
                0032-0781
                1471-9053
                July 2020
                July 01 2020
                May 11 2020
                July 2020
                July 01 2020
                May 11 2020
                : 61
                : 7
                : 1365-1380
                Affiliations
                [1 ]Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
                [2 ]Department of Biological and Physical Sciences, Karatina University, P.O. Box 1957, 10101 Karatina, Kenya
                [3 ]School of Life Sciences, Linyi University, Linyi, China
                [4 ]National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
                Article
                10.1093/pcp/pcaa065
                32392327
                f11ae0f5-63b2-4efc-ad7e-dfcb1562f619
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article