8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures.

      Physical review letters

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report measurements of a coherent coupling between surface plasmon polaritons (SPP) and quantum well excitons in a hybrid metal-semiconductor nanostructure. The hybrid structure is designed to optimize the radiative exciton-SPP interaction which is probed by low-temperature, angle-resolved, far-field reflectivity spectroscopy. As a result of the coupling, a significant shift of approximately 7 meV and an increase in broadening by approximately 4 meV of the quantum well exciton resonance are observed. The experiments are corroborated by a phenomenological coupled-oscillator model predicting coupling strengths as large as 50 meV in structures with optimized detunings between the coupled exciton and SPP resonances. Such a strong interaction can, e.g., be used to enhance the luminescence yield of semiconductor quantum structures or to amplify SPP waves.

          Related collections

          Author and article information

          Journal
          18851308
          10.1103/PhysRevLett.101.116801

          Comments

          Comment on this article