24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown.

          Results

          We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms.

          Conclusion

          Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon-intron remodeling. The differentiated enzymatic properties might be acquired by the evolutionary relaxation of selection pressure and/or biochemical adaptation to the acting environments. Our present study would be beneficial to get detailed insights into the complex GPx evolution, and to understand the molecular basis of the specialized physiological implications of this antioxidant system in their respective donor organisms.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Strategies of antioxidant defense.

          H Sies (1993)
          Cellular protection against the deleterious effects of reactive oxidants generated in aerobic metabolism, called oxidative stress, is organized at multiple levels. Defense strategies include three levels of protection; prevention, interception, and repair. Regulation of the antioxidant capacity includes the maintenance of adequate levels of antioxidant and the localization of antioxidant compounds and enzymes. Short-term and long-term adaptation and cell specialisation in these functions are new areas of interest. Control over the activity of prooxidant enzymes, such as NADPH oxidase and NO synthases, is crucial. Synthetic antioxidants mimic biological strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A catalogue of splice junction sequences.

            S M Mount (1982)
            Splice junction sequences from a large number of nuclear and viral genes encoding protein have been collected. The sequence CAAG/GTAGAGT was found to be a consensus of 139 exon-intron boundaries (or donor sequences) and (TC)nNCTAG/G was found to be a consensus of 130 intron-exon boundaries (or acceptor sequences). The possible role of splice junction sequences as signals for processing is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutathione peroxidase family - an evolutionary overview.

              Glutathione peroxidases (EC 1.11.1.9 and EC 1.11.1.12) catalyze the reduction of H(2)O(2) or organic hydroperoxides to water or corresponding alcohols using reduced glutathione. Some glutathione peroxidase isozymes have a selenium-dependent glutathione peroxidase activity and present a selenocysteine encoded by the opal TGA codon. In the present study, insights into the evolution of the whole glutathione peroxidase gene family were obtained after a comprehensive phylogenetic analysis using the improved number of glutathione peroxidase sequences recorded in the PeroxiBase database (http://peroxidase.isb-sib.ch/index.php). The identification of a common ancestral origin for the diverse glutathione peroxidase clusters was not possible. The complex relationships and evolutionary rates of this gene family suggest that basal glutathione peroxidase classes, present in all kingdoms, have originated from independent evolutionary events such as gene duplication, gene losses, lateral gene transfer among invertebrates and vertebrates or plants. In addition, the present study also emphasizes the possibility of some members being submitted to strong selective forces that probably dictated functional convergences of taxonomically distant groups.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2009
                6 April 2009
                : 9
                : 72
                Affiliations
                [1 ]Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Institute, Suwon, Gyeonggi-do 440-746, Korea
                [2 ]Department of Parasitology, School of Medicine, Wuhan University, Wuhan, PR China
                [3 ]Department of Environmental Science, Kangwon National University, Chuncheon, Korea
                Article
                1471-2148-9-72
                10.1186/1471-2148-9-72
                2679728
                19344533
                f0deaacc-cc70-44ce-9ab0-3bc0cfd7d642
                Copyright © 2009 Bae et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 December 2008
                : 6 April 2009
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article