2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Customized m-RCNN and hybrid deep classifier for liver cancer segmentation and classification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diagnosing liver disease presents a significant medical challenge in impoverished countries, with over 30 billion individuals succumbing to it each year. Existing models for detecting liver abnormalities suffer from lower accuracy and higher constraint metrics. As a result, there is a pressing need for improved, efficient, and effective liver disease detection methods. To address the limitations of current models, this method introduces a deep liver segmentation and classification system based on a Customized Mask-Region Convolutional Neural Network (cm-RCNN). The process begins with preprocessing the input liver image, which includes Adaptive Histogram Equalization (AHE). AHE helps dehaze the input image, remove color distortion, and apply linear transformations to obtain the preprocessed image. Next, a precise region of interest is segmented from the preprocessed image using a novel deep strategy called cm-RCNN. To enhance segmentation accuracy, the architecture incorporates the ReLU activation function and the modified sigmoid activation function. Subsequently, a variety of features are extracted from the segmented image, including ResNet features, shape features (area, perimeter, approximation, and convex hull), and enhanced median binary pattern. These extracted features are then used to train a hybrid classification model, which incorporates classifiers like SqueezeNet and DeepMaxout models. The final classification outcome is determined by averaging the scores obtained from both classifiers.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cancer statistics, 2023

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries and mortality data collected by the National Center for Health Statistics. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States. Cancer incidence increased for prostate cancer by 3% annually from 2014 through 2019 after two decades of decline, translating to an additional 99,000 new cases; otherwise, however, incidence trends were more favorable in men compared to women. For example, lung cancer in women decreased at one half the pace of men (1.1% vs. 2.6% annually) from 2015 through 2019, and breast and uterine corpus cancers continued to increase, as did liver cancer and melanoma, both of which stabilized in men aged 50 years and older and declined in younger men. However, a 65% drop in cervical cancer incidence during 2012 through 2019 among women in their early 20s, the first cohort to receive the human papillomavirus vaccine, foreshadows steep reductions in the burden of human papillomavirus-associated cancers, the majority of which occur in women. Despite the pandemic, and in contrast with other leading causes of death, the cancer death rate continued to decline from 2019 to 2020 (by 1.5%), contributing to a 33% overall reduction since 1991 and an estimated 3.8 million deaths averted. This progress increasingly reflects advances in treatment, which are particularly evident in the rapid declines in mortality (approximately 2% annually during 2016 through 2020) for leukemia, melanoma, and kidney cancer, despite stable/increasing incidence, and accelerated declines for lung cancer. In summary, although cancer mortality rates continue to decline, future progress may be attenuated by rising incidence for breast, prostate, and uterine corpus cancers, which also happen to have the largest racial disparities in mortality.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Transformers in medical imaging: A survey

                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                06 May 2024
                30 May 2024
                06 May 2024
                : 10
                : 10
                : e30528
                Affiliations
                [a ]College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
                [b ]Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
                [c ]College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518188, China
                [d ]College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
                Author notes
                [* ]Corresponding author. College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China. huangbingding@ 123456sztu.edu.cn
                [** ]Corresponding author. Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China. kangyan@ 123456sztu.edu.cn
                [1]

                These author contributed equally to this work.

                Article
                S2405-8440(24)06559-9 e30528
                10.1016/j.heliyon.2024.e30528
                11096931
                f0c6a0e6-0bfb-4524-8827-b992e8c1a0e2
                © 2024 The Authors

                This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

                History
                : 30 December 2023
                : 28 April 2024
                : 29 April 2024
                Categories
                Research Article

                liver cancer classification,medical image segmentation,cm-rcnn,ahe and e-mbp

                Comments

                Comment on this article