2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast Graph Condensation with Structure-based Neural Tangent Kernel

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid development of Internet technology has given rise to a vast amount of graph-structured data. Graph Neural Networks (GNNs), as an effective method for various graph mining tasks, incurs substantial computational resource costs when dealing with large-scale graph data. A data-centric manner solution is proposed to condense the large graph dataset into a smaller one without sacrificing the predictive performance of GNNs. However, existing efforts condense graph-structured data through a computational intensive bi-level optimization architecture also suffer from massive computation costs. In this paper, we propose reforming the graph condensation problem as a Kernel Ridge Regression (KRR) task instead of iteratively training GNNs in the inner loop of bi-level optimization. More specifically, We propose a novel dataset condensation framework (GC-SNTK) for graph-structured data, where a Structure-based Neural Tangent Kernel (SNTK) is developed to capture the topology of graph and serves as the kernel function in KRR paradigm. Comprehensive experiments demonstrate the effectiveness of our proposed model in accelerating graph condensation while maintaining high prediction performance.

          Related collections

          Author and article information

          Journal
          17 October 2023
          Article
          2310.11046
          f0b99c1f-c4a2-4e7c-a360-0915e5814372

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          68T01
          15 pages, 6 figures, 5 tables
          cs.LG cs.AI

          Artificial intelligence
          Artificial intelligence

          Comments

          Comment on this article