0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of three-dimensional scaffolds based on polyglycerol sebacate/ polycaprolactone/ gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tissue engineering for cartilage regeneration has made great advances in recent years, although there are still challenges to overcome. This study aimed to evaluate the chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) on three-dimensional scaffolds based on polyglycerol sebacate (PGS) / polycaprolactone (PCL) / gelatin(Gel) in the presence of Nanohydroxyapatite (nHA).

          Materials and methods

          In this study, a series of nHA-nanocomposite scaffolds were fabricated using 100:0:0, 60:40:0, and 60:20:20 weight ratios of PGS to PCL: Gel copolymers through salt leaching method. The morphology and porosity of prepared samples was characterized by SEM and EDX mapping analysis. Also, the dynamic contact angle and PBS adsorption tests are used to identify the effect of copolymerization and nanoparticles on scaffolds' hydrophilicity. The hydrolytic degradation properties were also analyzed. Furthermore, cell viability and proliferation as well as cell adhesion are evaluated to find out the biocompatibility. To determine the potential ability of nHA-nanocomposite scaffolds in chondrogenic differentiation, RT-PCR assay was performed to monitor the expression of collagen II, aggrecan, and Sox9 genes as markers of cartilage differentiation.

          Results

          The nanocomposites had an elastic modulus within a range of 0.71–1.30 MPa and 0.65–0.43 MPa, in dry and wet states, respectively. The PGS/PCL sample showed a water contact angle of 72.44 ± 2.2°, while the hydrophilicity significantly improved by adding HA nanoparticles. It was found from the hydrolytic degradation study that HA incorporation can accelerate the degradation rate compared with PGS and PGS/PCL samples. Furthermore, the in vitro biocompatibility tests showed significant cell attachment, proliferation, and viability of adipose-derived mesenchymal stem cells (ADMSCs). RT-PCR also indicated a significant increase in collagen II, aggrecan and Sox9 mRNA levels.

          Conclusions

          Our findings demonstrated that these nanocomposite scaffolds promote the differentiation of hADSCs into chondrocytes possibly by the increase in mRNA levels of collagen II, aggrecan, and Sox9 as markers of chondrogenic differentiation. In conclusion, the addition of PCL, Gelatin, and HA into PGS is a practical approach to adjust the general features of PGS to prepare a promising scaffold for cartilage tissue engineering.

          Graphical Abstract

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          A tough biodegradable elastomer.

          Biodegradable polymers have significant potential in biotechnology and bioengineering. However, for some applications, they are limited by their inferior mechanical properties and unsatisfactory compatibility with cells and tissues. A strong, biodegradable, and biocompatible elastomer could be useful for fields such as tissue engineering, drug delivery, and in vivo sensing. We designed, synthesized, and characterized a tough biodegradable elastomer from biocompatible monomers. This elastomer forms a covalently crosslinked, three-dimensional network of random coils with hydroxyl groups attached to its backbone. Both crosslinking and the hydrogen-bonding interactions between the hydroxyl groups likely contribute to the unique properties of the elastomer. In vitro and in vivo studies show that the polymer has good biocompatibility. Polymer implants under animal skin are absorbed completely within 60 days with restoration of the implantation sites to their normal architecture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-Laden Hydrogels for Osteochondral and Cartilage Tissue Engineering.

            Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications

                Bookmark

                Author and article information

                Contributors
                s.hesamitakalloo@iauctb.ac.ir
                Journal
                Biol Proced Online
                Biol Proced Online
                Biological Procedures Online
                BioMed Central (London )
                1480-9222
                24 March 2023
                24 March 2023
                2023
                : 25
                : 9
                Affiliations
                [1 ]GRID grid.411463.5, ISNI 0000 0001 0706 2472, Department of Biomedical Engineering, Central Branch, , Islamic Azad University, ; Tehran, Iran
                [2 ]GRID grid.411463.5, ISNI 0000 0001 0706 2472, Department of Biology, Central Branch, , Islamic Azad University, ; P.O. Box 13145-784, Tehran, Iran
                [3 ]GRID grid.411463.5, ISNI 0000 0001 0706 2472, Stem Cell Research Center, , Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Branch, ; Tehran, Iran
                [4 ]GRID grid.411521.2, ISNI 0000 0000 9975 294X, Applied Biotechnology Research Center, , Baqiyatallah University of Medical Sciences, ; Tehran, Iran
                Author information
                http://orcid.org/0000-0002-9492-3038
                Article
                197
                10.1186/s12575-023-00197-z
                10039520
                36964481
                f0b59c0b-6d7a-4fe4-a17f-d7e11181c589
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 January 2023
                : 18 March 2023
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Life sciences
                biomaterials,nanocomposites,cartilage,tissue engineering
                Life sciences
                biomaterials, nanocomposites, cartilage, tissue engineering

                Comments

                Comment on this article