7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications

      ,
      Journal of the Mechanical Behavior of Biomedical Materials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d8780996e67">Biomaterials having higher strength and increased bioactivity are widely researched topics in the area of scaffold and implant fabrication. Metal-based biomaterials are favorably suitable for load-bearing implants due to their outstanding mechanical and structural properties. The issue with pure metallic material used for bio-implant is the mismatch between the mechanical properties of the human body parts and the implant. The mismatch in modulus and hardness values causes damage to muscles and other body parts due to the phenomena of 'stress-shielding'. As per the rule of mixture, combining a biocompatible ceramic with metals will not only lower the overall mechanical strength, but will also enhance the composite's bioactivity. In the present work, a Metal-Ceramic composite of Ti and μ-HAp is processed through high-energy mechanical alloying. The μ-HAp powders (in a weight fraction of 1%, 2%, and 3%) were alloyed with Pure Ti powder sintered using microwave hybrid heating (MHH). The homogeneously alloyed materials were inspected for chemical and elemental characteristics using XRD, SEM-EDX, and FTIR analyses. Nano-mechanical and micro-hardness properties were inspected for the fabricated Ti- μ-HAp composites and it shows a decreasing trend. Elastic modulus declined from 130.8 GPa to 50.11 GPa for 3 wt% μ-HAp compared to pure-Ti sample. The mechanical behaviour of developed composites confirms that it can minimize the stress-shielding impact due to comparatively lesser strength and hardness than pure metallic samples. </p>

          Related collections

          Author and article information

          Contributors
          Journal
          Journal of the Mechanical Behavior of Biomedical Materials
          Journal of the Mechanical Behavior of Biomedical Materials
          Elsevier BV
          17516161
          June 2023
          June 2023
          : 142
          : 105852
          Article
          10.1016/j.jmbbm.2023.105852
          37068431
          f09bd699-aa2f-4023-9259-6d987308a678
          © 2023

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://doi.org/10.15223/policy-017

          https://doi.org/10.15223/policy-037

          https://doi.org/10.15223/policy-012

          https://doi.org/10.15223/policy-029

          https://doi.org/10.15223/policy-004

          History

          Comments

          Comment on this article

          scite_
          13
          0
          5
          0
          Smart Citations
          13
          0
          5
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content890

          Cited by3