21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accelerated infected wound healing by probiotic-based living microneedles with long-acting antibacterial effect

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Delays in infected wound healing are usually a result of bacterial infection and local inflammation, which imposes a significant and often underappreciated burden on patients and society. Current therapies for chronic wound infection generally suffer from limited drug permeability and frequent drug administration, owing to the existence of a wound biofilm that acts as a barrier restricting the entry of various antibacterial drugs. Here, we report the design of a biocompatible probiotic-based microneedle (MN) patch that can rapidly deliver beneficial bacteria to wound tissues with improved delivery efficiency. The probiotic is capable of continuously producing antimicrobial substances by metabolizing introduced glycerol, thereby facilitating infected wound healing through long-acting antibacterial and anti-inflammatory effects. Additionally, the beneficial bacteria can remain highly viable (>80 %) inside MNs for as long as 60 days at 4 °C. In a mouse model of Staphylococcus aureus-infected wounds, a single administration of the MN patch exhibited superior antimicrobial efficiency and wound healing performance in comparison with the control groups, indicating great potential for accelerating infected wound closure. Further development of live probiotic-based MN patches may enable patients to better manage chronically infected wounds.

          Graphical abstract

          Highlights

          • Develop a probiotic-based living MN patch for accelerating infected wound healing.

          • Explore the design of MN patch with glycerol for long-acting antibacterial property.

          • Adopt the strategy of “antibacterial by bacteria” to achieve continuous antibacterial effect.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem.

          Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid of information brochures and the performance of more pragmatic studies in primary care with outcomes that are of clinicians' interest, such as complications and clinical outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

            ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections.

              Foot infections are a common and serious problem in persons with diabetes. Diabetic foot infections (DFIs) typically begin in a wound, most often a neuropathic ulceration. While all wounds are colonized with microorganisms, the presence of infection is defined by ≥2 classic findings of inflammation or purulence. Infections are then classified into mild (superficial and limited in size and depth), moderate (deeper or more extensive), or severe (accompanied by systemic signs or metabolic perturbations). This classification system, along with a vascular assessment, helps determine which patients should be hospitalized, which may require special imaging procedures or surgical interventions, and which will require amputation. Most DFIs are polymicrobial, with aerobic gram-positive cocci (GPC), and especially staphylococci, the most common causative organisms. Aerobic gram-negative bacilli are frequently copathogens in infections that are chronic or follow antibiotic treatment, and obligate anaerobes may be copathogens in ischemic or necrotic wounds. Wounds without evidence of soft tissue or bone infection do not require antibiotic therapy. For infected wounds, obtain a post-debridement specimen (preferably of tissue) for aerobic and anaerobic culture. Empiric antibiotic therapy can be narrowly targeted at GPC in many acutely infected patients, but those at risk for infection with antibiotic-resistant organisms or with chronic, previously treated, or severe infections usually require broader spectrum regimens. Imaging is helpful in most DFIs; plain radiographs may be sufficient, but magnetic resonance imaging is far more sensitive and specific. Osteomyelitis occurs in many diabetic patients with a foot wound and can be difficult to diagnose (optimally defined by bone culture and histology) and treat (often requiring surgical debridement or resection, and/or prolonged antibiotic therapy). Most DFIs require some surgical intervention, ranging from minor (debridement) to major (resection, amputation). Wounds must also be properly dressed and off-loaded of pressure, and patients need regular follow-up. An ischemic foot may require revascularization, and some nonresponding patients may benefit from selected adjunctive measures. Employing multidisciplinary foot teams improves outcomes. Clinicians and healthcare organizations should attempt to monitor, and thereby improve, their outcomes and processes in caring for DFIs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                08 May 2024
                August 2024
                08 May 2024
                : 38
                : 292-304
                Affiliations
                [a ]Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
                [b ]TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
                [c ]Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
                [d ]Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
                Author notes
                [* ]Corresponding author. Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China. weili.mn@ 123456whu.edu.cn
                [** ]Corresponding author. guolianghbwh@ 123456163.com
                [1]

                These authors contribute equally to this work.

                Article
                S2452-199X(24)00174-9
                10.1016/j.bioactmat.2024.05.008
                11091528
                38745591
                f09b2101-2bf0-471c-a7b4-8c67e2e21c65
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 29 January 2024
                : 3 May 2024
                : 3 May 2024
                Categories
                Article

                microneedles,infected wound healing,probiotic,transdermal delivery,long-acting

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content130

                Cited by6

                Most referenced authors700