53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Anopheles culicifacies is the major vector of both falciparum and vivax malaria in Sri Lanka, while Anopheles subpictus and certain other species function as secondary vectors. In Sri Lanka, An. culicifacies is present as a species complex consisting of species B and E, while An. subpictus exists as a complex of species A-D. The freshwater breeding habit of An. culicifacies is well established. In order to further characterize the breeding sites of the major malaria vectors in Sri Lanka, a limited larval survey was carried out at a site in the Eastern province that was affected by the 2004 Asian tsunami.

          Methods

          Anopheline larvae were collected fortnightly for six months from a brackish water body near Batticaloa town using dippers. Collected larvae were reared in the laboratory and the emerged adults were identified using standard keys. Sibling species status was established based on Y-chromosome morphology for An. culicifacies larvae and morphometric characteristics for An. subpictus larvae and adults. Salinity, dissolved oxygen and pH were determined at the larval collection site.

          Results

          During a six month study covering dry and wet seasons, a total of 935 anopheline larvae were collected from this site that had salinity levels up to 4 parts per thousand at different times. Among the emerged adult mosquitoes, 661 were identified as An. culicifacies s.l. and 58 as An. subpictus s.l. Metaphase karyotyping of male larvae showed the presence of species E of the Culicifacies complex, and adult morphometric analysis the presence of species B of the Subpictus complex. Both species were able to breed in water with salinity levels up to 4 ppt.

          Conclusions

          The study demonstrates the ability of An. culicifacies species E, the major vector of falciparum and vivax malaria in Sri Lanka, to oviposit and breed in brackish water. The sibling species B in the An. subpictus complex, a well-known salt water breeder and a secondary malaria vector in the country, was also detected at the same site. Since global warming and the rise in sea levels will further increase of inland brackish water bodies, the findings have significant implications for the control of malaria in Sri Lanka and elsewhere.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Climate change and vector-borne diseases: a regional analysis.

          Current evidence suggests that inter-annual and inter-decadal climate variability have a direct influence on the epidemiology of vector-borne diseases. This evidence has been assessed at the continental level in order to determine the possible consequences of the expected future climate change. By 2100 it is estimated that average global temperatures will have risen by 1.0-3.5 degrees C, increasing the likelihood of many vector-borne diseases in new areas. The greatest effect of climate change on transmission is likely to be observed at the extremes of the range of temperatures at which transmission occurs. For many diseases these lie in the range 14-18 degrees C at the lower end and about 35-40 degrees C at the upper end. Malaria and dengue fever are among the most important vector-borne diseases in the tropics and subtropics; Lyme disease is the most common vector-borne disease in the USA and Europe. Encephalitis is also becoming a public health concern. Health risks due to climatic changes will differ between countries that have developed health infrastructures and those that do not. Human settlement patterns in the different regions will influence disease trends. While 70% of the population in South America is urbanized, the proportion in sub-Saharan Africa is less than 45%. Climatic anomalies associated with the El Niño-Southern Oscillation phenomenon and resulting in drought and floods are expected to increase in frequency and intensity. They have been linked to outbreaks of malaria in Africa, Asia and South America. Climate change has far-reaching consequences and touches on all life-support systems. It is therefore a factor that should be placed high among those that affect human health and survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change and malaria transmission.

            There is a consensus among climatologists that our planet is experiencing a progressive rise in surface temperature due to the increased production of "greenhouse" gases. Some of the possible consequences of elevated temperature on malaria transmission are examined in the present review. A simple mathematical model is first used to examine the effect of temperature on the ability of Anopheles maculipennis to transmit vivax malaria. This indicates that small increases in temperature at low temperatures may increase the risk of transmission substantially. This is important, since vulnerable communities, poorly protected by health services, in areas of unstable or no malaria are likely to be at increased risk of future outbreaks. In contrast, areas of stable transmission may be little affected by rising temperature. It is thought that global warming will lead to coastal flooding, changes in precipitation and, indirectly, changes in land use. Just how these changes will effect transmission at a regional level requires an understanding of the ecology of local vectors, since environmental changes which favour malaria transmission in one vector species may reduce it in another. Methods for predicting future changes in malaria in different regions are discussed, highlighting the need for further research in this area. Most importantly, there is a need for researchers to validate the accuracy of the models used for predicting malaria and to confirm the assumptions on which the models are based.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malaria vectors in a traditional dry zone village in Sri Lanka.

              Malaria transmission by anopheline mosquitoes was studied in a traditional tank-irrigation-based rice-producing village in the malaria-endemic low country dry zone of northcentral Sri Lanka during the period August 1994-February 1997. Adult mosquitoes were collected from human and bovid bait catches, bovid-baited trap huts, indoor catches, and pit traps. Mosquito head-thoraces were tested for the presence of Plasmodium falciparum and P. vivax, and blood-engorged abdomens for the presence of human blood by ELISAs. House surveys were done at two-day intervals to record cases of blood film-confirmed malaria among the villagers. A total of 7,823 female anophelines representing 14 species were collected. Trends in anopheline abundance were significantly correlated with rainfall of the preceding month in An. annularis, An. barbirostris, An. subpictus, An. vagus, and An. varuna, but were not significant in An. culicifacies and An. peditaeniatus. Malaria parasite infections were seen in seven mosquito species, with 75% of the positive mosquitoes containing P. falciparum and 25% P. vivax. Polymorph PV247 was recorded from a vector (i.e., An. varuna) for the first time in Sri Lanka. Computations of mean number of infective vector (MIV) rates using abundance, circumsporozoite (CS) protein rate, and human blood index (HBI) showed the highest rate in An. culicifacies. A malaria outbreak occurred from October 1994 to January 1995 in which 45.5% of village residents experienced at least a single disease episode. Thereafter, malaria incidence remained low. Anopheles culicifacies abundance lagged by one month correlated positively with monthly malaria incidence during the outbreak period, and although this species ranked fifth in terms of abundance, infection was associated with a high MIV rate due to a high CS protein rate and HBI. Abundance trends in other species did not correlate significantly with malaria. It was concluded that An. culicifacies was epidemiologically the most important vector in the study area.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central
                1475-2875
                2010
                21 April 2010
                : 9
                : 106
                Affiliations
                [1 ]Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka
                [2 ]Department of Zoology, Faculty of Science, Eastern University, Chenkaladi, Sri Lanka
                [3 ]Institute of Medicine, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
                Article
                1475-2875-9-106
                10.1186/1475-2875-9-106
                2864285
                20409313
                f030ce8f-dcb7-4e22-9f80-8de0fb860bac
                Copyright ©2010 Jude et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 November 2009
                : 21 April 2010
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article