32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Constraining the atmospheric limb of the plastic cycle

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plastic pollution is one of the most pressing environmental and social issues of the 21st century. Recent work has highlighted the atmosphere’s role in transporting microplastics to remote locations [S. Allen et al., Nat. Geosci. 12, 339 (2019) and J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran, Science 368, 1257–1260 (2020)]. Here, we use in situ observations of microplastic deposition combined with an atmospheric transport model and optimal estimation techniques to test hypotheses of the most likely sources of atmospheric plastic. Results suggest that atmospheric microplastics in the western United States are primarily derived from secondary re-emission sources including roads (84%), the ocean (11%), and agricultural soil dust (5%). Using our best estimate of plastic sources and modeled transport pathways, most continents were net importers of plastics from the marine environment, underscoring the cumulative role of legacy pollution in the atmospheric burden of plastic. This effort uses high-resolution spatial and temporal deposition data along with several hypothesized emission sources to constrain atmospheric plastic. Akin to global biogeochemical cycles, plastics now spiral around the globe with distinct atmospheric, oceanic, cryospheric, and terrestrial residence times. Though advancements have been made in the manufacture of biodegradable polymers, our data suggest that extant nonbiodegradable polymers will continue to cycle through the earth’s systems. Due to limited observations and understanding of the source processes, there remain large uncertainties in the transport, deposition, and source attribution of microplastics. Thus, we prioritize future research directions for understanding the plastic cycle.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

          The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Community Earth System Model: A Framework for Collaborative Research

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

              Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 12 2021
                April 20 2021
                April 12 2021
                April 20 2021
                : 118
                : 16
                : e2020719118
                Article
                10.1073/pnas.2020719118
                33846251
                f0217f9f-ad92-4515-a4bb-65255ddd1267
                © 2021

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article