8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Treprostinil, a prostacyclin analog, ameliorates renal ischemia–reperfusion injury: preclinical studies in a rat model of acute kidney injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Renal ischemia–reperfusion injury (IRI) is a major factor causing acute kidney injury (AKI). No pharmacological treatments for prevention or amelioration of I/R-induced renal injury are available. Here we investigate the protective effects of treprostinil, a prostacyclin analog, against renal IRI in vivo.

          Methods

          Male Sprague Dawley rats were subjected to bilateral renal ischemia (45 min) followed by reperfusion for 1–168 h. Treprostinil (100 ng/kg/min) or placebo was administered subcutaneously for 18–24 h before ischemia.

          Results

          Treatment with treprostinil both significantly reduced peak elevation and accelerated the return to baseline levels for serum creatinine and blood urea nitrogen versus I/R-placebo animals following IRI. I/R-treprostinil animals exhibited reduced histopathological features of tubular epithelial injury versus I/R-placebo animals. IRI resulted in a marked induction of messenger RNA coding for kidney injury biomarkers, kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin and for pro-inflammatory cytokines chemokine (C-C motif) ligand 2, interleukin 1β, interleukin 6 and intracellular adhesion molecular 1 in animals treated with placebo only relative to sham controls. Upregulation of expression of all these genes was significantly suppressed by treprostinil. Treprostinil significantly suppressed the elevation in renal lipid peroxidation found in the I/R-placebo group at 1-h post-reperfusion. In addition, renal protein expression of cleaved poly(ADP-ribose) polymerase 1 and caspase-3, -8 and -9 in I/R-placebo animals was significantly inhibited by treprostinil.

          Conclusions

          This study demonstrates the efficacy of treprostinil in ameliorating I/R-induced AKI in rats by significantly improving renal function early post-reperfusion and by inhibiting renal inflammation and tubular epithelial apoptosis. Importantly, these data suggest that treprostinil has the potential to serve as a therapeutic agent to protect the kidney against IRI in vivo.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis and acute kidney injury.

          Improved mechanistic understanding of renal cell death in acute kidney injury (AKI) has generated new therapeutic targets. Clearly, the classic lesion of acute tubular necrosis is not adequate to describe the consequences of renal ischemia, nephrotoxin exposure, or sepsis on glomerular filtration rate. Experimental evidence supports a pathogenic role for apoptosis in AKI. Interestingly, proximal tubule epithelial cells are highly susceptible to apoptosis, and injury at this site contributes to organ failure. During apoptosis, well-orchestrated events converge at the mitochondrion, the organelle that integrates life and death signals generated by the BCL2 (B-cell lymphoma 2) protein family. Death requires the 'perfect storm' for outer mitochondrial membrane injury to release its cellular 'executioners'. The complexity of this process affords new targets for effective interventions, both before and after renal insults. Inhibiting apoptosis appears to be critical, because circulating factors released by the injured kidney induce apoptosis and inflammation in distant organs including the heart, lung, liver, and brain, potentially contributing to the high morbidity and mortality associated with AKI. Manipulation of known stress kinases upstream of mitochondrial injury, induction of endogenous, anti-apoptotic proteins, and improved understanding of the timing and consequences of renal cell apoptosis will inevitably improve the outcome of human AKI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury.

            Traditional blood and urine markers for the diagnosis of various renal diseases are insensitive and nonspecific. Kidney Injury Molecule-1 (KIM-1) is a type 1 transmembrane protein, with an immunoglobulin and mucin domain, whose expression is markedly up-regulated in the proximal tubule in the post-ischemic rat kidney. The ectodomain of KIM-1 is shed from cells. The current studies were carried out to evaluate whether KIM-1 is present in human acute renal failure and might serve as a urinary marker of acute renal tubular injury. Kidney tissue samples from six patients with biopsy-proven acute tubular necrosis (ATN) were evaluated by immunohistochemistry for expression of KIM-1. Urine samples were collected from an additional thirty-two patients with various acute and chronic renal diseases, as well as from eight normal controls. Urinary KIM-1 protein was detected by immunoassay and was quantified by ELISA. There was extensive expression of KIM-1 in proximal tubule cells in biopsies from 6 of 6 patients with confirmed ATN. The normalized urinary KIM-1 levels were significantly higher in patients with ischemic ATN (2.92 +/- 0.61; N = 7) compared to levels in patients with other forms of acute renal failure (0.63 +/- 0.17, P < 0.01; N = 16) or chronic renal disease (0.72 +/- 0.37, P < 0.01; N = 9). Adjusted for age, gender, length of time delay between the initial insult and sampling of the urine, a one-unit increase in normalized KIM-1 was associated with a greater than 12-fold (OR 12.4, 95% CI 1.2 to 119) risk for the presence of ATN. Concentrations of other urinary biomarkers, including total protein, gamma-glutamyltransferase, and alkaline phosphatase, did not correlate with clinical diagnostic groupings. A soluble form of human KIM-1 can be detected in the urine of patients with ATN and may serve as a useful biomarker for renal proximal tubule injury facilitating the early diagnosis of the disease and serving as a diagnostic discriminator.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delayed graft function in kidney transplantation.

              Delayed graft function is a form of acute renal failure resulting in post-transplantation oliguria, increased allograft immunogenicity and risk of acute rejection episodes, and decreased long-term survival. Factors related to the donor and prerenal, renal, or postrenal transplant factors related to the recipient can contribute to this condition. From experimental studies, we have learnt that both ischaemia and reinstitution of blood flow in ischaemically damaged kidneys after hypothermic preservation activate a complex sequence of events that sustain renal injury and play a pivotal part in the development of delayed graft function. Elucidation of the pathophysiology of renal ischaemia and reperfusion injury has contributed to the development of strategies to decrease the rate of delayed graft function, focusing on donor management, organ procurement and preservation techniques, recipient fluid management, and pharmacological agents (vasodilators, antioxidants, anti-inflammatory agents). Several new drugs show promise in animal studies in preventing or ameliorating ischaemia-reperfusion injury and possibly delayed graft function, but definitive clinical trials are lacking. The goal of monotherapy for the prevention or treatment of is perhaps unattainable, and multidrug approaches or single drug targeting multiple signals will be the next step to reduce post-transplantation injury and delayed graft function.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nephrology Dialysis Transplantation
                Oxford University Press (OUP)
                0931-0509
                1460-2385
                February 01 2021
                January 25 2021
                November 06 2020
                February 01 2021
                January 25 2021
                November 06 2020
                : 36
                : 2
                : 257-266
                Affiliations
                [1 ]Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
                [2 ]Division of Renal Disease, Department of Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
                [3 ]Department of Pathology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
                [4 ]Division of Organ Transplantation, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
                Article
                10.1093/ndt/gfaa236
                33156922
                f014a9c9-f678-4b74-9ecb-21c826714144
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content256

                Cited by7

                Most referenced authors654