10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12929-021-00725-7.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          COVID-19: towards controlling of a pandemic

          During the past 3 weeks, new major epidemic foci of coronavirus disease 2019 (COVID-19), some without traceable origin, have been identified and are rapidly expanding in Europe, North America, Asia, and the Middle East, with the first confirmed cases being identified in African and Latin American countries. By March 16, 2020, the number of cases of COVID-19 outside China had increased drastically and the number of affected countries, states, or territories reporting infections to WHO was 143. 1 On the basis of ”alarming levels of spread and severity, and by the alarming levels of inaction”, on March 11, 2020, the Director-General of WHO characterised the COVID-19 situation as a pandemic. 2 The WHO Strategic and Technical Advisory Group for Infectious Hazards (STAG-IH) regularly reviews and updates its risk assessment of COVID-19 to make recommendations to the WHO health emergencies programme. STAG-IH's most recent formal meeting on March 12, 2020, included an update of the global COVID-19 situation and an overview of the research priorities established by the WHO Research and Development Blueprint Scientific Advisory Group that met on March 2, 2020, in Geneva, Switzerland, to prioritise the recommendations of an earlier meeting on COVID-19 research held in early February, 2020. 3 In this Comment, we outline STAG-IH's understanding of control activities with the group's risk assessment and recommendations. To respond to COVID-19, many countries are using a combination of containment and mitigation activities with the intention of delaying major surges of patients and levelling the demand for hospital beds, while protecting the most vulnerable from infection, including elderly people and those with comorbidities. Activities to accomplish these goals vary and are based on national risk assessments that many times include estimated numbers of patients requiring hospitalisation and availability of hospital beds and ventilation support. Most national response strategies include varying levels of contact tracing and self-isolation or quarantine; promotion of public health measures, including handwashing, respiratory etiquette, and social distancing; preparation of health systems for a surge of severely ill patients who require isolation, oxygen, and mechanical ventilation; strengthening health facility infection prevention and control, with special attention to nursing home facilities; and postponement or cancellation of large-scale public gatherings. Some lower-income and middle-income countries require technical and financial support to successfully respond to COVID-19, and many African, Asian, and Latin American nations are rapidly developing the capacity for PCR testing for COVID-19. Based on more than 500 genetic sequences submitted to GISAID (the Global Initiative on Sharing All Influenza Data), the virus has not drifted to significant strain difference and changes in sequence are minimal. There is no evidence to link sequence information with transmissibility or virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 1 the virus that causes COVID-19. SARS-CoV-2, like other emerging high-threat pathogens, has infected health-care workers in China4, 5 and several other countries. To date, however, in China, where infection prevention and control was taken seriously, nosocomial transmission has not been a major amplifier of transmission in this epidemic. Epidemiological records in China suggest that up to 85% of human-to-human transmission has occurred in family clusters 4 and that 2055 health-care workers have become infected, with an absence of major nosocomial outbreaks and some supporting evidence that some health-care workers acquired infection in their families.4, 5 These findings suggest that close and unprotected exposure is required for transmission by direct contact or by contact with fomites in the immediate environment of those with infection. Continuing reports from outside China suggest the same means of transmission to close contacts and persons who attended the same social events or were in circumscribed areas such as office spaces or cruise ships.6, 7 Intensified case finding and contact tracing are considered crucial by most countries and are being undertaken to attempt to locate cases and to stop onward transmission. Confirmation of infection at present consists of PCR for acute infection, and although many serological tests to identify antibodies are being developed they require validation with well characterised sera before they are reliable for general use. From studies of viral shedding in patients with mild and more severe infections, shedding seems to be greatest during the early phase of disease (Myoung-don Oh and Gabriel Leung, WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China, personal communication).8, 9 The role, if any, of asymptomatic carriers in transmitting infection is not yet completely understood. 4 Presymptomatic infectiousness is a concern (Myoung-don Oh and Gabriel Leung, personal communication)8, 9 and many countries are now using 1–2 days of symptom onset as the start day for contact identification. A comprehensive report published by the Chinese Center for Disease Control and Prevention on the epidemiological characteristics of 72 314 patients with COVID-19 confirmed previous understanding that most known infections cause mild disease, with a case fatality ratio that ranged from 2·9% in Hubei province to 0·4% in the other Chinese provinces. 5 This report also suggested that elderly people, particularly those older than 80 years, and people with comorbidities, such as cardiac disease, respiratory disease, and diabetes, are at greatest risk of serious disease and death. The case definition used in China changed several times as COVID-19 progressed, making it difficult to completely characterise the natural history of infection, including the mortality ratio. 4 Information on mortality and contributing factors from outbreak sites in other countries varies greatly, and seems to be influenced by such factors as age of patients, associated comorbidities, availability of isolation facilities for acute care for patients who need respiratory support, and surge capacity of the health-care system. Individuals in care facilities for older people are at particular risk of serious disease as shown in the report of a series of deaths in an elderly care facility in the USA. 10 The pandemic of COVID-19 has clearly entered a new stage with rapid spread in countries outside China and all members of society must understand and practise measures for self-protection and for prevention of transmission of infection to others. STAG-IH makes the following recommendations. First, countries need to rapidly and robustly increase their preparedness, readiness, and response actions based on their national risk assessment and the four WHO transmission scenarios 11 for countries with no cases, first cases, first clusters, and community transmission and spread (4Cs). Second, all countries should consider a combination of response measures: case and contact finding; containment or other measures that aim to delay the onset of patient surges where feasible; and measures such as public awareness, promotion of personal protective hygiene, preparation of health systems for a surge of severely ill patients, stronger infection prevention and control in health facilities, nursing homes, and long-term care facilities, and postponement or cancellation of large-scale public gatherings. Third, countries with no or a few first cases of COVID-19 should consider active surveillance for timely case finding; isolate, test, and trace every contact in containment; practise social distancing; and ready their health-care systems and populations for spread of infection. Fourth, lower-income and middle-income countries that request support from WHO should be fully supported technically and financially. Financial support should be sought by countries and by WHO, including from the World Bank Pandemic Emergency Financing Facility and other mechanisms. 12 Finally, research gaps about COVID-19 should be addressed and are shown in the accompanying panel and include some identified by the global community and by the Research and Development Blueprint Scientific Advisory Group. Panel Research gaps that need to be addressed for the response to COVID-19 • Fill gaps in understanding of the natural history of infection to better define the period of infectiousness and transmissibility; more accurately estimate the reproductive number in various outbreak settings and improve understanding the role of asymptomatic infection. • Comparative analysis of different quarantine strategies and contexts for their effectiveness and social acceptability • Enhance and develop an ethical framework for outbreak response that includes better equity for access to interventions for all countries • Promote the development of point-of-care diagnostic tests • Determine the best ways to apply knowledge about infection prevention and control in health-care settings in resource-constrained countries (including identification of optimal personal protective equipment) and in the broader community, specifically to understand behaviour among different vulnerable groups • Support standardised, best evidence-based approach for clinical management and better outcomes and implement randomised, controlled trials for therapeutics and vaccines as promising agents emerge • Validation of existing serological tests, including those that have been developed by commercial entities, and establishment of biobanks and serum panels of well characterised COVID-19 sera to support such efforts • Complete work on animal models for vaccine and therapeutic research and development The STAG-IH emphasises the importance of the continued rapid sharing of data of public health importance in medical journals that provide rapid peer review and online publication without a paywall. It is sharing of information in this way, as well as technical collaboration among clinicians, epidemiologists, and virologists, that has provided the world with its current understanding of COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.

            Adult bone-marrow-derived mesenchymal stem cells are immunosuppressive and prolong the rejection of mismatched skin grafts in animals. We transplanted haploidentical mesenchymal stem cells in a patient with severe treatment-resistant grade IV acute graft-versus-host disease of the gut and liver. Clinical response was striking. The patient is now well after 1 year. We postulate that mesenchymal stem cells have a potent immunosuppressive effect in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo.

              Dentinal repair in the postnatal organism occurs through the activity of specialized cells, odontoblasts, that are thought to be maintained by an as yet undefined precursor population associated with pulp tissue. In this study, we isolated a clonogenic, rapidly proliferative population of cells from adult human dental pulp. These DPSCs were then compared with human bone marrow stromal cells (BMSCs), known precursors of osteoblasts. Although they share a similar immunophenotype in vitro, functional studies showed that DPSCs produced only sporadic, but densely calcified nodules, and did not form adipocytes, whereas BMSCs routinely calcified throughout the adherent cell layer with clusters of lipid-laden adipocytes. When DPSCs were transplanted into immunocompromised mice, they generated a dentin-like structure lined with human odontoblast-like cells that surrounded a pulp-like interstitial tissue. In contrast, BMSCs formed lamellar bone containing osteocytes and surface-lining osteoblasts, surrounding a fibrous vascular tissue with active hematopoiesis and adipocytes. This study isolates postnatal human DPSCs that have the ability to form a dentin/pulp-like complex.
                Bookmark

                Author and article information

                Contributors
                rita1204@tmu.edu.tw
                tyling@ntu.edu.tw
                Journal
                J Biomed Sci
                J Biomed Sci
                Journal of Biomedical Science
                BioMed Central (London )
                1021-7770
                1423-0127
                14 April 2021
                14 April 2021
                2021
                : 28
                : 28
                Affiliations
                [1 ]GRID grid.412896.0, ISNI 0000 0000 9337 0481, Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, , Taipei Medical University, ; 250 Wuxing Street, Taipei, 11031 Taiwan
                [2 ]GRID grid.412896.0, ISNI 0000 0000 9337 0481, Graduate Institute of Medical Sciences, College of Medicine, , Taipei Medical University, ; 250 Wuxing Street, Taipei, 11031 Taiwan
                [3 ]GRID grid.412896.0, ISNI 0000 0000 9337 0481, TMU Research Center of Cell Therapy and Regeneration Medicine, , Taipei Medical University, ; 250 Wuxing Street, Taipei, 11031 Taiwan
                [4 ]GRID grid.19188.39, ISNI 0000 0004 0546 0241, Department of Obstetrics and Gynecology, College of Medicine, , National Taiwan University, ; Taipei, 10041 Taiwan
                [5 ]GRID grid.412094.a, ISNI 0000 0004 0572 7815, Department of Obstetrics and Gynecology, , National Taiwan University Hospital Yunlin Branch, ; Yunlin, 64041 Taiwan
                [6 ]GRID grid.28665.3f, ISNI 0000 0001 2287 1366, Institute of Atomic and Molecular Sciences, , Academia Sinica, ; Taipei, 106 Taiwan
                [7 ]GRID grid.19188.39, ISNI 0000 0004 0546 0241, Department and Graduate Institute of Pharmacology, College of Medicine, , National Taiwan University, ; Taipei, 10617 Taiwan
                [8 ]GRID grid.45907.3f, ISNI 0000 0000 9744 5137, Department of Chemical Engineering, , National Taiwan University of Science and Technology, ; Taipei, 106 Taiwan
                [9 ]GRID grid.412896.0, ISNI 0000 0000 9337 0481, International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, , Taipei Medical University, ; Taipei, 11031 Taiwan
                [10 ]Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
                [11 ]GRID grid.412896.0, ISNI 0000 0000 9337 0481, Comprehensive Cancer Center of Taipei Medical University, ; Taipei, 11031 Taiwan
                [12 ]GRID grid.412896.0, ISNI 0000 0000 9337 0481, The PhD Program for Translational Medicine, College of Medical Science and Technology, , Taipei Medical University, ; Taipei, 11031 Taiwan
                [13 ]GRID grid.19188.39, ISNI 0000 0004 0546 0241, Research Center for Developmental Biology and Regenerative Medicine, , National Taiwan University, ; Taipei, 100 Taiwan
                Author information
                http://orcid.org/0000-0001-6020-9998
                Article
                725
                10.1186/s12929-021-00725-7
                8043779
                33849537
                f00e1c80-6b1f-4f63-a4f1-68ee4c45e241
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 14 November 2020
                : 7 April 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004663, Ministry of Science and Technology, Taiwan;
                Award ID: MOST 107-2321-B-038-002, MOST 107-2314-B-038-061, MOST108-2314-B-038-006, MOST108-2321-B-038-003, MOST109-2314-B-038-135, MOST109-2321-B-038-003
                Award ID: MOST105-2325-B-002-040, MOST106-3114-B-038-001, MOST107-2321-B-038 -002, MOST108-2321-B-038-003
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Molecular medicine
                mesenchymal stem/stromal cell,cell therapy,systemic safety,biodistribution,single cell imaging

                Comments

                Comment on this article