1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Immobilising molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO2 reduction.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photoelectrochemical CO2 reduction is a promising approach for renewable fuel generation and to reduce greenhouse gas emissions. Owing to their synthetic tunability, molecular catalysts for the CO2 reduction reaction can give rise to high product selectivity. In this context, a RuII complex [Ru(HO-tpy)(6-mbpy)(NCCH3)]2+ (HO-tpy = 4'-hydroxy-2,2':6',2''-terpyridine; 6-mbpy = 6-methyl-2,2'-bipyridine) was immobilised on a thin SiOx layer of a p-Si electrode that was decorated with a bromide-terminated molecular layer. Following the characterisation of the assembled photocathodes by X-ray photoelectron spectroscopy and ellipsometry, PEC experiments demonstrate electron transfer from the p-Si to the Ru complex through the native oxide layer under illumination and a cathodic bias. A state-of-the-art photovoltage of 570 mV was determined by comparison with an analogous n-type Si assembly. While the photovoltage of the modified photocathode is promising for future photoelectrochemical CO2 reduction and the p-Si/SiOx junction seems to be unchanged during the PEC experiments, a fast desorption of the molecular Ru complex was observed. An in-depth investigation of the cathode degradation by comparison with reference materials highlights the role of the hydroxyl functionality of the Ru complex to ensure its grafting on the substrate. In contrast, no essential role for the bromide function on the Si substrate designed to engage with the hydroxyl group of the Ru complex in an SN2-type reaction could be established.

          Related collections

          Author and article information

          Journal
          Dalton Trans
          Dalton transactions (Cambridge, England : 2003)
          Royal Society of Chemistry (RSC)
          1477-9234
          1477-9226
          Aug 04 2021
          : 50
          : 30
          Affiliations
          [1 ] Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden. sascha.ott@kemi.uu.se.
          Article
          10.1039/d1dt01331a
          34259300
          efdb65fc-2e06-4855-8734-ca2bb1233576
          History

          Comments

          Comment on this article