45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Emerging structural insights into glycosyltransferase-mediated synthesis of glycans

      ,
      Nature Chemical Biology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology. </p>

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Dystroglycan: from biosynthesis to pathogenesis of human disease.

          Alpha- and beta-dystroglycan constitute a membrane-spanning complex that connects the extracellular matrix to the cytoskeleton. Although a structural role for dystroglycan had been identified, biochemical and genetic discoveries have recently highlighted the significance of posttranslational processing for dystroglycan function. Glycosylation is the crucial modification that modulates the function of dystroglycan as a receptor for extracellular binding partners. It has become clear that perturbation of dystroglycan glycosylation is the central event in the pathogenesis of several complex disorders, and recent advances suggest that glycosylation could be modulated to ameliorate the pathological features. Our increased understanding of the mechanisms of interaction of dystroglycan with its ligands has become an essential tool in deciphering the biological processes related to the human diseases in which the proteins are implicated.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Structures and mechanisms of glycosyltransferases

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological functions of fucose in mammals

              Fucose is a 6-deoxy hexose in the l -configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N -glycans, O -glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
                Bookmark

                Author and article information

                Journal
                Nature Chemical Biology
                Nat Chem Biol
                Springer Science and Business Media LLC
                1552-4450
                1552-4469
                September 2019
                August 19 2019
                September 2019
                : 15
                : 9
                : 853-864
                Article
                10.1038/s41589-019-0350-2
                6820136
                31427814
                efd7ca67-9c3e-42cf-844c-92f98c835946
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,224

                Cited by73

                Most referenced authors1,071