26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA double-strand breaks (DSBs) and other lesions occur frequently during cell growth and in meiosis. These are often repaired by homologous recombination (HR). HR may result in the formation of DNA structures called Holliday junctions (HJs), which need to be resolved to allow chromosome segregation. Whereas HJs are present in most HR events in meiosis, it has been proposed that in vegetative cells most HR events occur through intermediates lacking HJs. A recent screen in yeast has shown HJ resolution activity for a protein called Yen1, in addition to the previously known Mus81/Mms4 complex. Yeast strains deleted for both YEN1 and MMS4 show a reduction in growth rate, and are very sensitive to DNA-damaging agents. In addition, we investigate the genetic interaction of yen1 and mms4 with mutants defective in different repair pathways. We find that in the absence of Yen1 and Mms4 deletion of RAD1 or RAD52 have no further effect, whereas additional sensitivity is seen if RAD51 is deleted. Finally, we show that yeast cells are unable to carry out meiosis in the absence of both resolvases. Our results show that both Yen1 and Mms4/Mus81 play important (although not identical) roles during vegetative growth and in meiosis.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.

          The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Bloom's syndrome helicase suppresses crossing over during homologous recombination.

            Mutations in BLM, which encodes a RecQ helicase, give rise to Bloom's syndrome, a disorder associated with cancer predisposition and genomic instability. A defining feature of Bloom's syndrome is an elevated frequency of sister chromatid exchanges. These arise from crossing over of chromatid arms during homologous recombination, a ubiquitous process that exists to repair DNA double-stranded breaks and damaged replication forks. Whereas crossing over is required in meiosis, in mitotic cells it can be associated with detrimental loss of heterozygosity. BLM forms an evolutionarily conserved complex with human topoisomerase IIIalpha (hTOPO IIIalpha), which can break and rejoin DNA to alter its topology. Inactivation of homologues of either protein leads to hyper-recombination in unicellular organisms. Here, we show that BLM and hTOPO IIIalpha together effect the resolution of a recombination intermediate containing a double Holliday junction. The mechanism, which we term double-junction dissolution, is distinct from classical Holliday junction resolution and prevents exchange of flanking sequences. Loss of such an activity explains many of the cellular phenotypes of Bloom's syndrome. These results have wider implications for our understanding of the process of homologous recombination and the mechanisms that exist to prevent tumorigenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation.

              Protein modification by ubiquitin is emerging as a signal for various biological processes in eukaryotes, including regulated proteolysis, but also for non-degradative functions such as protein localization, DNA repair and regulation of chromatin structure. A small ubiquitin-related modifier (SUMO) uses a similar conjugation system that sometimes counteracts the effects of ubiquitination. Ubiquitin and SUMO compete for modification of proliferating cell nuclear antigen (PCNA), an essential processivity factor for DNA replication and repair. Whereas multi-ubiquitination is mediated by components of the RAD6 pathway and promotes error-free repair, SUMO modification is associated with replication. Here we show that RAD6-mediated mono-ubiquitination of PCNA activates translesion DNA synthesis by the damage-tolerant polymerases eta and zeta in yeast. Moreover, polymerase zeta is differentially affected by mono-ubiquitin and SUMO modification of PCNA. Whereas ubiquitination is required for damage-induced mutagenesis, both SUMO and mono-ubiquitin contribute to spontaneous mutagenesis in the absence of DNA damage. Our findings assign a function to SUMO during S phase and demonstrate how ubiquitin and SUMO, by regulating the accuracy of replication and repair, contribute to overall genomic stability.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                September 2011
                September 2011
                23 May 2011
                23 May 2011
                : 39
                : 16
                : 7009-7019
                Affiliations
                Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69979, Israel
                Author notes
                *To whom correspondence should be addressed. Tel: +972 3 640 9031; Fax: +972 3 640 9407; Email: martin@ 123456post.tau.ac.il
                Article
                gkr277
                10.1093/nar/gkr277
                3167605
                21609961
                efa7aaca-3bc6-41df-b597-db6ba63d1be4
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 December 2010
                : 7 April 2011
                : 7 April 2011
                Page count
                Pages: 11
                Categories
                Genome Integrity, Repair and Replication

                Genetics
                Genetics

                Comments

                Comment on this article