8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: found
          • Article: not found

          Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer

          Pembrolizumab is a humanized monoclonal antibody against programmed death 1 (PD-1) that has antitumor activity in advanced non-small-cell lung cancer (NSCLC), with increased activity in tumors that express programmed death ligand 1 (PD-L1).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response

            Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9 , demonstrating utility for immunotherapy research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

              An improvement in overall survival among patients with metastatic melanoma has been an elusive goal. In this phase 3 study, ipilimumab--which blocks cytotoxic T-lymphocyte-associated antigen 4 to potentiate an antitumor T-cell response--administered with or without a glycoprotein 100 (gp100) peptide vaccine was compared with gp100 alone in patients with previously treated metastatic melanoma. A total of 676 HLA-A*0201-positive patients with unresectable stage III or IV melanoma, whose disease had progressed while they were receiving therapy for metastatic disease, were randomly assigned, in a 3:1:1 ratio, to receive ipilimumab plus gp100 (403 patients), ipilimumab alone (137), or gp100 alone (136). Ipilimumab, at a dose of 3 mg per kilogram of body weight, was administered with or without gp100 every 3 weeks for up to four treatments (induction). Eligible patients could receive reinduction therapy. The primary end point was overall survival. The median overall survival was 10.0 months among patients receiving ipilimumab plus gp100, as compared with 6.4 months among patients receiving gp100 alone (hazard ratio for death, 0.68; P<0.001). The median overall survival with ipilimumab alone was 10.1 months (hazard ratio for death in the comparison with gp100 alone, 0.66; P=0.003). No difference in overall survival was detected between the ipilimumab groups (hazard ratio with ipilimumab plus gp100, 1.04; P=0.76). Grade 3 or 4 immune-related adverse events occurred in 10 to 15% of patients treated with ipilimumab and in 3% treated with gp100 alone. There were 14 deaths related to the study drugs (2.1%), and 7 were associated with immune-related adverse events. Ipilimumab, with or without a gp100 peptide vaccine, as compared with gp100 alone, improved overall survival in patients with previously treated metastatic melanoma. Adverse events can be severe, long-lasting, or both, but most are reversible with appropriate treatment. (Funded by Medarex and Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00094653.)
                Bookmark

                Author and article information

                Journal
                Clin Med Insights Oncol
                Clin Med Insights Oncol
                ONC
                sponc
                Clinical Medicine Insights. Oncology
                SAGE Publications (Sage UK: London, England )
                1179-5549
                5 August 2021
                2021
                : 15
                : 11795549211035540
                Affiliations
                [1-11795549211035540]Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People’s Republic of China
                Author notes
                [*]Hongqian Guo, Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Zhongshan Road 321#, Gulou District, Nanjing, China. Email: doctorghq@ 123456gmail.com
                [*]Rong Yang, Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Zhongshan Road 321#, Gulou District, Nanjing, China. Email: doctoryr@ 123456gmail.com
                Author information
                https://orcid.org/0000-0001-8741-7121
                Article
                10.1177_11795549211035540 ONC-20-0120.R1
                10.1177/11795549211035540
                8365012
                34408525
                ef9f6676-da9e-4723-8dc2-2c763b2b8809
                © The Author(s) 2021

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 5 November 2020
                : 7 July 2021
                Funding
                Funded by: National Natural Science Foundation of China, ;
                Award ID: 81772710
                Funded by: National Natural Science Foundation of China, ;
                Award ID: 81772727
                Funded by: Nanjing Science and technology Development Key Project, ;
                Award ID: YKK19011
                Categories
                Review Article
                Custom metadata
                January-December 2021
                ts1

                Oncology & Radiotherapy
                myeloid-derived suppressor cells,icb,pd-(l) 1,tme,immune escape
                Oncology & Radiotherapy
                myeloid-derived suppressor cells, icb, pd-(l) 1, tme, immune escape

                Comments

                Comment on this article