8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Do baseline glucocorticoids simultaneously represent fitness and environmental quality in a declining aerial insectivore?

      ,
      Oikos
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and behavioural responses to human-induced rapid environmental change

          Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conservation physiology.

            Conservation biologists increasingly face the need to provide legislators, courts and conservation managers with data on causal mechanisms underlying conservation problems such as species decline. To develop and monitor solutions, conservation biologists are progressively using more techniques that are physiological. Here, we review the emerging discipline of conservation physiology and suggest that, for conservation strategies to be successful, it is important to understand the physiological responses of organisms to their changed environment. New physiological techniques can enable a rapid assessment of the causes of conservation problems and the consequences of conservation actions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates.

              The vertebrate stress response helps animals respond to environmental dangers such as predators or storms. An important component of the stress response is glucocorticoid (GC) release, resulting from activation of the hypothalamic-pituitary-adrenal axis. After release, GCs induce a variety of behavioral and physiological changes that presumably help the animal respond appropriately to the situation. Consequently, GC secretion is often considered an obligatory response to stressful situations. Evidence now indicates, however, that free-living species from many taxa can seasonally modulate GC release. In other words, the magnitudes of both unstressed and stressed GC concentrations change depending upon the time of year. This review examines the growing evidence that GC concentrations in free-living reptiles, amphibians, and birds, but not mammals, are commonly elevated during the breeding season. This evidence is then used to test three hypotheses with different focuses on GC's energetic or behavioral effects, as well as on GC's role in preparing the animal for subsequent stressors. These hypotheses attempt to place annual GC rhythms into a physiological or behavioral context. Integrating seasonal differences in GC concentrations with either different physiological states or different life history stages provides clues to a new understanding of how GCs actually help in survival during stress. Consequently, understanding seasonal modulation of GC release has far-reaching importance for both the physiology of the stress response and the short-term survival of individual animals.
                Bookmark

                Author and article information

                Journal
                Oikos
                Oikos
                Wiley-Blackwell
                00301299
                December 2016
                December 2016
                : 125
                : 12
                : 1824-1837
                Article
                10.1111/oik.03354
                ef953020-ff42-4af9-9531-b6871f46dfc4
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article