7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Polyethylene Glycol Thyrotropin (TSH) Precipitable Percentage (Macro-TSH) in Patients with a History of Thyroid Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Owing to its large molecular size, polyethylene glycol (PEG)-precipitable thyrotropin (TSH) can accumulate in the circulation, elevating TSH levels. PEG-precipitable TSH can be used to detect macro-TSH (mTSH) in serum. Our aim was to evaluate the prevalence of mTSH in patients who had undergone thyroidectomy for thyroid cancer.

          Methods

          Seventy-three thyroid cancer patients and 24 control subjects on levothyroxine (LT4) TSH-suppressive or replacement therapy were evaluated. Screening for mTSH was performed by adding PEG to serum in order to precipitate γ-globulin. A percentage of PEG-precipitable TSH ≥80% was considered suggestive of mTSH.

          Results

          No correlation between free-T4 (fT4) and TSH levels was found. PEG-precipitable TSH was 39.3%±1.9% in thyroid cancer patients and 44.1%±3.9% in controls. Macro-TSH was deemed to be present in one thyroid cancer patient and in two control subjects. Only in the thyroid cancer group was PEG-precipitable TSH found to be negatively correlated with fT4 concentration. No correlation was found between PEG-precipitable TSH and other clinical conditions in any patients.

          Conclusion

          The presence of mTSH seems to be a rare phenomenon in thyroid cancer. In some patients with low PEG-precipitable TSH, a reduction in LT4 dosage could be suggested. LT4 dosage adjusted to body weight is the main factor in maintaining TSH in a semi-suppressed or normal range. Evaluation of mTSH could be necessary in patients in whom a balance is required between adequate TSH suppression and the avoidance of unnecessary exogenous hyperthyroxinemia.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The Colorado thyroid disease prevalence study.

          The prevalence of abnormal thyroid function in the United States and the significance of thyroid dysfunction remain controversial. Systemic effects of abnormal thyroid function have not been fully delineated, particularly in cases of mild thyroid failure. Also, the relationship between traditional hypothyroid symptoms and biochemical thyroid function is unclear. To determine the prevalence of abnormal thyroid function and the relationship between (1) abnormal thyroid function and lipid levels and (2) abnormal thyroid function and symptoms using modern and sensitive thyroid tests. Cross-sectional study. Participants in a statewide health fair in Colorado, 1995 (N = 25 862). Serum thyrotropin (thyroid-stimulating hormone [TSH]) and total thyroxine (T4) concentrations, serum lipid levels, and responses to a hypothyroid symptoms questionnaire. The prevalence of elevated TSH levels (normal range, 0.3-5.1 mIU/L) in this population was 9.5%, and the prevalence of decreased TSH levels was 2.2%. Forty percent of patients taking thyroid medications had abnormal TSH levels. Lipid levels increased in a graded fashion as thyroid function declined. Also, the mean total cholesterol and low-density lipoprotein cholesterol levels of subjects with TSH values between 5.1 and 10 mIU/L were significantly greater than the corresponding mean lipid levels in euthyroid subjects. Symptoms were reported more often in hypothyroid vs euthyroid individuals, but individual symptom sensitivities were low. The prevalence of abnormal biochemical thyroid function reported here is substantial and confirms previous reports in smaller populations. Among patients taking thyroid medication, only 60% were within the normal range of TSH. Modest elevations of TSH corresponded to changes in lipid levels that may affect cardiovascular health. Individual symptoms were not very sensitive, but patients who report multiple thyroid symptoms warrant serum thyroid testing. These results confirm that thyroid dysfunction is common, may often go undetected, and may be associated with adverse health outcomes that can be avoided by serum TSH measurement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human anti-animal antibody interferences in immunological assays.

            L. Kricka (1999)
            The scope and significance of human anti-animal antibody interference in immunological assays is reviewed with an emphasis on human anti-animal immunoglobulins, particularly human anti-mouse antibodies (HAMAs). Anti-animal antibodies (IgG, IgA, IgM, IgE class, anti-isotype, and anti-idiotype specificity) arise as a result of iatrogenic and noniatrogenic causes and include human anti-mouse, -rabbit, -goat, -sheep, -cow, -pig, -rat, and -horse antibodies and antibodies with mixed specificity. Circulating antibodies can reach gram per liter concentrations and may persist for years. Prevalence estimates for anti-animal antibodies in the general population vary widely and range from <1% to 80%. Human anti-animal antibodies cause interferences in immunological assays. The most common human anti-animal antibody interferent is HAMA, which causes both positive and negative interferences in two-site mouse monoclonal antibody-based assays. Strategies to prevent the development of human anti-animal antibody responses include immunosuppressant therapy and the use of humanized, polyethylene glycolylated, or Fab fragments of antibody agents. Sample pretreatment or assay redesign can eliminate immunoassay interferences caused by anti-animal antibodies. Enzyme immunoassays, immunoradiometric assays, immunofluorescence, and HPLC assays have been designed to detect HAMA and other anti-animal antibodies, but intermethod comparability is complicated by differences in assay specificity and lack of standardization. Human anti-animal antibodies often go unnoticed, to the detriment of patient care. A heightened awareness on the part of laboratory staff and clinicians of the problems caused by this type of interference in routine immunoassay tests is desirable. Efforts should be directed at improving methods for identifying and eliminating this type of analytical interference.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer.

              Despite clinical practice guidelines for the management of differentiated thyroid cancer (DTC), there are no recommendations on the optimal serum thyrotropin (TSH) concentration to reduce tumor recurrences and improve survival, while ensuring an optimal quality of life with minimal adverse effects. The aim of this review was to provide a risk-adapted management scheme for levothyroxine (L-T4) therapy in patients with DTC. The objective was to establish which patients require complete suppression of serum TSH levels, given their risk of recurrent or metastatic DTC, and how potential adverse effects on the heart and skeleton, induced by subclinical hyperthyroidism, in concert with advanced age and comorbidities, may influence the degree of TSH suppression. A risk-stratified approach to predict the rate of recurrence and death from thyroid cancer was based on the recently revised American Thyroid Association guidelines. A stratified approach to predict the risk from the adverse effects of L-T4 was devised, taking into account the age of the patient, as well as the presence of preexisting cardiovascular and skeletal risk factors that might predispose to the development of long-term adverse cardiovascular or skeletal outcomes, particularly increased heart rate and left ventricular mass, atrial fibrillation, and osteoporosis. Nine potential patient categories can be defined, with differing TSH targets for both initial and long-term L-T4 therapy. Before deciding on the degree of TSH suppression during initial and long-term L-T4 treatment in patients with DTC, it is necessary to consider the aggressiveness of DTC, as well as the potential for adverse effects induced by iatrogenic subclinical hyperthyroidism. More aggressive TSH suppression is indicated in patients with high-risk disease or recurrent tumor, whereas less aggressive TSH suppression is reasonable in low-risk patients. In patients with high-risk DTC and an equally high risk of adverse effects, long-term treatment with L-T4 therapy should be individualized and balanced against the potential for adverse effects. In patients with an intermediate risk for thyroid cancer recurrence and a high risk of adverse effects of therapy, the degree of TSH suppression should be reevaluated during the follow-up period. Normalization of serum TSH is advisable for long-term treatment of disease-free elderly patients with DTC and significant comorbidities.
                Bookmark

                Author and article information

                Journal
                Endocrinol Metab (Seoul)
                Endocrinol Metab (Seoul)
                ENM
                Endocrinology and Metabolism
                Korean Endocrine Society
                2093-596X
                2093-5978
                December 2017
                14 December 2017
                : 32
                : 4
                : 460-465
                Affiliations
                [1 ]Department of Internal Medicine, University of Genoa, Genoa, Italy.
                [2 ]Endocrine Unit, San Martino University Hospital, Genoa, Italy.
                [3 ]Laboratory Analysis Unit, San Martino University Hospital, Genoa, Italy.
                Author notes
                Corresponding author: Massimo Giusti. Endocrine Unit, San Martino University Hospital, Viale Benedetto XV, n. 6 I-16100 Genoa, Italy. Tel: +39-10-3537953, Fax: +39-10-3538977, magius@ 123456unige.it
                Author information
                https://orcid.org/0000-0002-1269-8376
                Article
                10.3803/EnM.2017.32.4.460
                5744732
                29271618
                ef8441ec-ab89-4337-ab40-e2af04b8e2d2
                Copyright © 2017 Korean Endocrine Society

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 August 2017
                : 22 September 2017
                : 10 October 2017
                Categories
                Original Article
                Clinical Study

                polyethylene glycol-precipitable thyrotropin,macro-thyrotropin,thyrotropin,levothyroxine-posology,thyroid neoplasms

                Comments

                Comment on this article