4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Discovery of in-vivo chemical probes for treating Alzheimer´s disease: Dual phosphodiesterase 5 (PDE5) and class I histone deacetylases-selective inhibitors.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to determine the contributions of histone deacetylase (HDAC) isoforms to the beneficial effects of dual phosphodiesterase 5 (PDE5) and pan-HDAC inhibitors on in vivo models of Alzheimer's disease (AD), we have designed, synthesized, and tested novel chemical probes with the desired target compound profile of PDE5 and class I HDAC selective inhibitors. Compared to previous hydroxamate-based series, these molecules exhibit longer residence times on HDACs. In this scenario, shorter or longer preincubation times may have a significant impact on the IC50 values of these compounds and therefore on their corresponding selectivity profiles on the different HDAC isoforms. On the other hand, different chemical series have been explored and, as expected, some pairwise comparisons show a clear impact of the scaffold on biological responses (e.g., 35a vs 40a). The lead identification process led to compound 29a, which shows an adequate ADME-Tox profile and in vivo target engagement (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation) in the central nervous system (CNS), suggesting that this compound represents an optimized chemical probe; thus, 29a has been assayed in a mouse model of AD (Tg2576).

          Related collections

          Author and article information

          Journal
          ACS Chemical Neuroscience
          ACS Chem. Neurosci.
          American Chemical Society (ACS)
          1948-7193
          1948-7193
          December 10 2018
          December 10 2018
          Article
          10.1021/acschemneuro.8b00648
          30525452
          ef7f13a5-2953-4738-b923-e6b08729072d
          © 2018
          History

          Comments

          Comment on this article