14
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Control with uncertain data of socially structured compartmental epidemic models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. The importance of social structure, such as the age dependence that proved essential in the recent COVID-19 pandemic, must be considered, and in addition, the available data are often incomplete and heterogeneous, so a high degree of uncertainty must be incorporated into the model from the beginning. In this work we address these aspects, through an optimal control formulation of a socially structured epidemic model in presence of uncertain data. After the introduction of the optimal control problem, we formulate an instantaneous approximation of the control that allows us to derive new feedback controlled compartmental models capable of describing the epidemic peak reduction. The need for long-term interventions shows that alternative actions based on the social structure of the system can be as effective as the more expensive global strategy. The timing and intensity of interventions, however, is particularly relevant in the case of uncertain parameters on the actual number of infected people. Simulations related to data from the first wave of the recent COVID-19 outbreak in Italy are presented and discussed.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Estimates of the severity of coronavirus disease 2019: a model-based analysis

          Summary Background In the face of rapidly changing data, a range of case fatality ratio estimates for coronavirus disease 2019 (COVID-19) have been produced that differ substantially in magnitude. We aimed to provide robust estimates, accounting for censoring and ascertainment biases. Methods We collected individual-case data for patients who died from COVID-19 in Hubei, mainland China (reported by national and provincial health commissions to Feb 8, 2020), and for cases outside of mainland China (from government or ministry of health websites and media reports for 37 countries, as well as Hong Kong and Macau, until Feb 25, 2020). These individual-case data were used to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the case fatality ratio by relating the aggregate distribution of cases to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for demography and age-based and location-based under-ascertainment. We also estimated the case fatality ratio from individual line-list data on 1334 cases identified outside of mainland China. Using data on the prevalence of PCR-confirmed cases in international residents repatriated from China, we obtained age-stratified estimates of the infection fatality ratio. Furthermore, data on age-stratified severity in a subset of 3665 cases from China were used to estimate the proportion of infected individuals who are likely to require hospitalisation. Findings Using data on 24 deaths that occurred in mainland China and 165 recoveries outside of China, we estimated the mean duration from onset of symptoms to death to be 17·8 days (95% credible interval [CrI] 16·9–19·2) and to hospital discharge to be 24·7 days (22·9–28·1). In all laboratory confirmed and clinically diagnosed cases from mainland China (n=70 117), we estimated a crude case fatality ratio (adjusted for censoring) of 3·67% (95% CrI 3·56–3·80). However, after further adjusting for demography and under-ascertainment, we obtained a best estimate of the case fatality ratio in China of 1·38% (1·23–1·53), with substantially higher ratios in older age groups (0·32% [0·27–0·38] in those aged <60 years vs 6·4% [5·7–7·2] in those aged ≥60 years), up to 13·4% (11·2–15·9) in those aged 80 years or older. Estimates of case fatality ratio from international cases stratified by age were consistent with those from China (parametric estimate 1·4% [0·4–3·5] in those aged <60 years [n=360] and 4·5% [1·8–11·1] in those aged ≥60 years [n=151]). Our estimated overall infection fatality ratio for China was 0·66% (0·39–1·33), with an increasing profile with age. Similarly, estimates of the proportion of infected individuals likely to be hospitalised increased with age up to a maximum of 18·4% (11·0–7·6) in those aged 80 years or older. Interpretation These early estimates give an indication of the fatality ratio across the spectrum of COVID-19 disease and show a strong age gradient in risk of death. Funding UK Medical Research Council.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Contribution to the Mathematical Theory of Epidemics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 and Italy: what next?

              Summary The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 100 countries in a matter of weeks. A global response to prepare health systems worldwide is imperative. Although containment measures in China have reduced new cases by more than 90%, this reduction is not the case elsewhere, and Italy has been particularly affected. There is now grave concern regarding the Italian national health system's capacity to effectively respond to the needs of patients who are infected and require intensive care for SARS-CoV-2 pneumonia. The percentage of patients in intensive care reported daily in Italy between March 1 and March 11, 2020, has consistently been between 9% and 11% of patients who are actively infected. The number of patients infected since Feb 21 in Italy closely follows an exponential trend. If this trend continues for 1 more week, there will be 30 000 infected patients. Intensive care units will then be at maximum capacity; up to 4000 hospital beds will be needed by mid-April, 2020. Our analysis might help political leaders and health authorities to allocate enough resources, including personnel, beds, and intensive care facilities, to manage the situation in the next few days and weeks. If the Italian outbreak follows a similar trend as in Hubei province, China, the number of newly infected patients could start to decrease within 3–4 days, departing from the exponential trend. However, this cannot currently be predicted because of differences between social distancing measures and the capacity to quickly build dedicated facilities in China.
                Bookmark

                Author and article information

                Contributors
                giacomo.albi@univr.it
                lorenzo.pareschi@unife.it
                mattia.zanella@unipv.it
                Journal
                J Math Biol
                J Math Biol
                Journal of Mathematical Biology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0303-6812
                1432-1416
                23 May 2021
                23 May 2021
                2021
                : 82
                : 7
                : 63
                Affiliations
                [1 ]GRID grid.5611.3, ISNI 0000 0004 1763 1124, Department of Computer Science, , University of Verona, ; Verona, Italy
                [2 ]GRID grid.8484.0, ISNI 0000 0004 1757 2064, Department of Mathematics and Computer Science, , University of Ferrara, ; Ferrara, Italy
                [3 ]GRID grid.8982.b, ISNI 0000 0004 1762 5736, Department of Mathematics “F. Casorati”, , University of Pavia, ; Pavia, Italy
                Author information
                http://orcid.org/0000-0001-8456-5866
                Article
                1617
                10.1007/s00285-021-01617-y
                8141280
                34023964
                ef7df5e7-ca43-4329-af65-1164dcea8bae
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 May 2020
                : 23 April 2021
                : 15 May 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003407, Ministero dell’Istruzione, dell’Università e della Ricerca;
                Award ID: 2017KKJP4X
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2021

                Quantitative & Systems biology
                epidemic modelling,uncertainty quantification,social structure,optimal control,non-pharmaceutical interventions,covid-19,92d30,34h05,92d25,49n90,60-08

                Comments

                Comment on this article