2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sleep Deprivation Induces Cognitive Impairment by Increasing Blood-Brain Barrier Permeability via CD44

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sleep deprivation occurs frequently in older adults, which can result in delirium and cognitive impairment. CD44 is a key molecular in blood-brain barrier (BBB) regulation. However, whether CD44 participates in the role of sleep deprivation in cognitive impairment remains unclear. In this study, the effect of sleep deprivation on cognitive ability, tissue inflammation, BBB permeability, and astrocyte activity were evaluated in vivo. The differentially expressed genes (DEGs) were identified by RNA sequencing. A CD44 overexpression in the BBB model was performed in vitro to assess the effect and mechanisms of CD44. Sleep deprivation impaired the learning and memory ability and increased the levels of inflammatory cytokines, along with increased BBB permeability and activated astrocytes in hippocampus tissue. RNA sequencing of the hippocampus tissue revealed that 329 genes were upregulated in sleep deprivation-induced mice compared to control mice, and 147 genes were downregulated. GO and pathways showed that DEGs were mainly involved in BBB permeability and astrocyte activation, including nervous system development, neuron development, and brain development, and neuroactive ligand-receptor interaction. Moreover, the PCR analysis revealed that CD44 was dramatically increased in mice with sleep deprivation induction. The overexpression of CD44 in astrocytes promoted BBB permeability in vitro and induced the expression of the downstream gene NANOG. Our results indicate that sleep deprivation upregulated CD44 expression in hippocampus tissue, and increased BBB permeability, resulting in cognitive impairment.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Tight junctions of the blood-brain barrier: development, composition and regulation.

          1. The blood-brain barrier is essential for the maintenance and regulation of the neural microenvironment. The main characteristic features of blood-brain barrier endothelial cells are an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. 2. Endothelial blood-brain barrier tight junctions differ from epithelial tight junctions, not only by distinct morphological and molecular properties, but also by the fact that endothelial tight junctions are more sensitive to microenvironmental than epithelial factors. 3. Many ubiquitous molecular tight junction components have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin and 7H6. Signaling pathways involved in tight junction regulation include G-proteins, serine-, threonine- and tyrosine-kinases, extra and intracellular calcium levels, cAMP levels, proteases and cytokines. Common to most of these pathways is the modulation of cytoskeletal elements and the connection of tight junction transmembrane molecules to the cytoskeleton. Additionally, crosstalk between components of the tight junction- and the cadherin-catenin system of the adherens junction suggests a close functional interdependence of the two cell-cell contact systems. 4. Important new molecular aspects of tight junction regulation were recently elucidated. This review provides an integration of these new results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion.

            Astrocytes are housekeepers of the central nervous system (CNS) and are important for CNS development, homeostasis and defence. They communicate with neurones and other glial cells through the release of signalling molecules. Astrocytes secrete a wide array of classic neurotransmitters, neuromodulators and hormones, as well as metabolic, trophic and plastic factors, all of which contribute to the gliocrine system. The release of neuroactive substances from astrocytes occurs through several distinct pathways that include diffusion through plasmalemmal channels, translocation by multiple transporters and regulated exocytosis. As in other eukaryotic cells, exocytotic secretion from astrocytes involves divergent secretory organelles (synaptic-like microvesicles, dense-core vesicles, lysosomes, exosomes and ectosomes), which differ in size, origin, cargo, membrane composition, dynamics and functions. In this review, we summarize the features and functions of secretory organelles in astrocytes. We focus on the biogenesis and trafficking of secretory organelles and on the regulation of the exocytotic secretory system in the context of healthy and diseased astrocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification.

              The phenotypic differentiation of systemic macrophages that have infiltrated the central nervous system, pericytes, perivascular macrophages, and the "real" resident microglial cells is a major immunocytochemical and immunohistochemical concern for all users of cultures of brain cells and brain sections. It is not only important in assessing the purity of cell cultures; it is also of fundamental importance in the assessment of the pathogenetic significance of perivascular inflammatory phenomena within the brain. The lack of a single membranous and/or biochemical marker allowing conclusive identification of these cells is still a major problem in neurobiology. This review briefly discusses the functions of these cells and catalogs a large number of membranous and biochemical markers, which can assist in the identification of these cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                27 November 2020
                2020
                : 11
                : 563916
                Affiliations
                [1] 1Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University , Nanchang, China
                [2] 2Department of Anesthesiology, Zhuji People's Hospital of Zhejiang Province , Shaoxing, China
                Author notes

                Edited by: David Gozal, University of Missouri, United States

                Reviewed by: Abdelnaby Khalyfa, University of Missouri, United States; Frederic Roche, Université Jean Monnet, France

                *Correspondence: Guohai Xu xuguohai@ 123456sina.com

                This article was submitted to Sleep Disorders, a section of the journal Frontiers in Neurology

                †These authors have contributed equally to this work

                Article
                10.3389/fneur.2020.563916
                7728917
                33329306
                ef514fe4-3f78-4c8d-948e-c87136d0b8e6
                Copyright © 2020 Sun, Wu, Hua, Chen, Zhan and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 May 2020
                : 10 September 2020
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 65, Pages: 11, Words: 7155
                Categories
                Neurology
                Original Research

                Neurology
                cognitive impairment,blood-brain barrier permeability,cd44,astrocytes,sleep deprivation
                Neurology
                cognitive impairment, blood-brain barrier permeability, cd44, astrocytes, sleep deprivation

                Comments

                Comment on this article