40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development

      research-article
      , ,
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          S6 kinase localizes to the active zone in a Brp-dependent manner and collaborates with presynaptic PDK1 to modulate neuronal cell size, bouton size, active zone number, and neurotransmitter release.

          Abstract

          The dimensions of neuronal dendrites, axons, and synaptic terminals are reproducibly specified for each neuron type, yet it remains unknown how these structures acquire their precise dimensions of length and diameter. Similarly, it remains unknown how active zone number and synaptic strength are specified relative the precise dimensions of presynaptic boutons. In this paper, we demonstrate that S6 kinase (S6K) localizes to the presynaptic active zone. Specifically, S6K colocalizes with the presynaptic protein Bruchpilot (Brp) and requires Brp for active zone localization. We then provide evidence that S6K functions downstream of presynaptic PDK1 to control synaptic bouton size, active zone number, and synaptic function without influencing presynaptic bouton number. We further demonstrate that PDK1 is also a presynaptic protein, though it is distributed more broadly. We present a model in which synaptic S6K responds to local extracellular nutrient and growth factor signaling at the synapse to modulate developmental size specification, including cell size, bouton size, active zone number, and neurotransmitter release.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          PDK1, the master regulator of AGC kinase signal transduction.

          The interaction of insulin and growth factors with their receptors on the outside surface of a cell, leads to the activation of phosphatidylinositol 3-kinase (PI 3-kinase) and generation of the phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) second messenger at the inner surface of the cell membrane. One of the most studied signalling events controlled by PtdIns(3,4,5)P3, comprises the activation of a group of AGC family protein kinases, including isoforms of protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), serum- and glucocorticoid-induced protein kinase (SGK) and protein kinase C (PKC), which play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation and survival. Here, we review recent biochemical, genetic and structural studies on the 3-phosphoinositide-dependent protein kinase-1 (PDK1), which phosphorylates and activates the AGC kinase members regulated by PI 3-kinase. We also discuss whether inhibitors of PDK1 might have chemotherapeutic potential in the treatment of cancers in which the PDK1-regulated AGC kinases are constitutively activated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance.

            We used the enhancer detection/GAL4 system in Drosophila to direct increased levels of Fasciclin II (Fas II) expression on motoneuron growth cones and axons and to direct ectopic Fas II expression on other cells they encounter. Four classes of abnormal phenotypes are observed: "bypass" phenotypes, in which axons fail to defasciculate at the choice point where they would normally enter their muscle target region and instead extend past their target; "detour" phenotypes, in which these bypass growth cones enter their muscle target region at a different location; "stall" phenotypes, in which axons that enter their muscle target region fail to defasciculate from one another to probe their muscle targets; and "misroute" phenotypes, in which growth cones are diverted onto abnormal pathways by contact with Fas II-positive cells. These phenotypes show that changes in the pattern and level of Fas II expression can alter growth cone guidance, apparently in part by modulating the ability of these growth cones to respond to other guidance cues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway.

              The molecular mechanisms that determine the size and complexity of the neuronal dendritic tree are unclear. Here, we show that the phosphoinositide-3' kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway promotes the growth and branching of dendrites in cultured hippocampal neurons. Constitutively active mutants of Ras, PI3K, and Akt, or RNA interference (RNAi) knockdown of lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome Ten), induced growth and elaboration of dendrites that was blocked by mTOR inhibitor rapamycin and/or by overexpression of eIF-4E binding protein 1 (4E-BP1), which inhibits translation of 5' capped mRNAs. The effect of PI3K on dendrites was lost in more mature neurons (>14 d in vitro). Dendritic complexity was reduced by inhibition of PI3K and by RNAi knockdown of mTOR or p70 ribosomal S6 kinase (p70S6K, an effector of mTOR). A rapamycin-resistant mutant of mTOR "rescued" the morphogenetic effects of PI3K in the presence of rapamycin. By regulating global and/or local protein translation, and as a convergence point for multiple signaling pathways, mTOR could play a central role in the control of dendrite growth and branching during development and in response to activity.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                19 September 2011
                : 194
                : 6
                : 921-935
                Affiliations
                Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
                Author notes
                Correspondence to Graeme W. Davis: Graeme.davis@ 123456ucsf.edu
                Article
                201101042
                10.1083/jcb.201101042
                3207287
                21930778
                ef5072cb-13ed-4e66-a0c9-eb7b5312053e
                © 2011 Cheng et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 11 January 2011
                : 22 August 2011
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content21

                Cited by14

                Most referenced authors688