28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-alpha (TNFalpha). Autocrine/paracrine TNFalpha-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.

          Related collections

          Author and article information

          Journal
          Nat Neurosci
          Nature neuroscience
          Springer Science and Business Media LLC
          1097-6256
          1097-6256
          Jul 2001
          : 4
          : 7
          Affiliations
          [1 ] Department of Pharmacological Sciences, Center for Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti, 9, 20133 Milan, Italy.
          Article
          89490
          10.1038/89490
          11426226
          ef4eb79d-337b-4729-8cf4-ec1b351fdf8e
          History

          Comments

          Comment on this article