7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MCT1 Is a New Prognostic Biomarker and Its Therapeutic Inhibition Boosts Response to Temozolomide in Human Glioblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Glioblastoma, the brain tumour with highest prevalence and lethality, exhibits a characteristic glycolytic phenotype with increased lactate production. Recently, we reported a MCT1 overexpression in GBMs tumours, being associated to tumour growth and aggressiveness. Thus, we aimed to disclose the role of MCT1 in GBM prognosis and in vivo therapy response. Importantly, MCT1 overexpression is associated with poor prognosis of GBM. Moreover, MCT1 inhibition retards GBM tumour growth and boosts response to temozolomide treatment.

          Abstract

          Background: Glioblastomas (GBMs) present remarkable metabolism reprograming, in which many cells display the “Warburg effect”, with the production of high levels of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). We described previously that MCT1 is up-regulated in human GBM samples, and MCT1 inhibition decreases glioma cell viability and aggressiveness. In the present study, we aimed to unveil the role of MCT1 in GBM prognosis and to explore it as a target for GBM therapy in vivo. Methods: MCT1 activity and protein expression were inhibited by AR-C155858 and CHC compounds or stable knockdown with shRNA, respectively, to assess in vitro and in vivo the effects of MCT1 inhibition and on response of GBM to temozolomide. Survival analyses on GBM patient cohorts were performed using Cox regression and Log-rank tests. Results: High levels of MCT1 expression were revealed to be a predictor of poor prognosis in multiple cohorts of GBM patients. Functionally, in U251 GBM cells, MCT1 stable knockdown decreased glucose consumption and lactate efflux, compromising the response to the MCT1 inhibitors CHC and AR-C155858. MCT1 knockdown significantly increased the survival of orthotopic GBM intracranial mice models when compared to their control counterparts. Furthermore, MCT1 downregulation increased the sensitivity to temozolomide in vitro and in vivo, resulting in significantly longer mice survival. Conclusions: This work provides first evidence for MCT1 as a new prognostic biomarker of GBM survival and further supports MCT1 targeting, alone or in combination with classical chemotherapy, for the treatment of GBM.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.

            The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.

              In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                11 July 2021
                July 2021
                : 13
                : 14
                : 3468
                Affiliations
                [1 ]Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; vera.miranda.goncalves@ 123456ipoporto.min-saude.pt (V.M.-G.); celinegoncalves@ 123456med.uminho.pt (C.S.G.); saragranja@ 123456med.uminho.pt (S.G.); joana.castro@ 123456i3bs.uminho.pt (J.V.d.C.); ruireis.hcb@ 123456gmail.com (R.M.R.); bfmcosta@ 123456med.uminho.pt (B.M.C.)
                [2 ]ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
                [3 ]Research Centre in Health and Environment (CISA), School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
                [4 ]Department of Pathological, Cytological and Thanatological Anatomy, School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), 4200-072 Porto, Portugal
                [5 ]Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
                Author notes
                [* ]Correspondence: fbaltazar@ 123456med.uminho.pt ; Tel.: +351-253-604828
                [†]

                Present address: Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal.

                Author information
                https://orcid.org/0000-0002-4231-5532
                https://orcid.org/0000-0002-3713-119X
                https://orcid.org/0000-0002-9639-7940
                https://orcid.org/0000-0003-4861-7432
                https://orcid.org/0000-0002-1770-4544
                Article
                cancers-13-03468
                10.3390/cancers13143468
                8306807
                34298681
                ef0e7e4b-69c9-4486-8bae-c8b1cdcb7f39
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 18 May 2021
                : 07 July 2021
                Categories
                Article

                monocarboxylate transporters,glioblastoma,lactate,warburg effect,prognostic biomarker

                Comments

                Comment on this article