Processing math: 100%
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ce‐Modified Ni(OH) 2 Nanoflowers Supported on NiSe 2 Octahedra Nanoparticles as High‐Efficient Oxygen Evolution Electrocatalyst

      1 , 1 , 1 , 1
      Advanced Energy Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exploring and developing high‐efficiency electrocatalysts for the oxygen evolution reaction (OER) is desirable yet challenging for cost‐effective transformation of renewable electricity into fuels and chemicals. Herein, a self‐supported electrode of nanoflower‐like Ce‐modified Ni(OH) 2 grown on high‐conductivity NiSe 2 octahedra nanoparticles is designed and fabricated for the first time. By virtue of i) the high conductivity of the NiSe 2 support for favorable electron transfer; ii) the open porous structure from the nanoflower‐like Ce‐modified Ni(OH) 2 for beneficial mass transport; iii) Ce doping for efficiently optimizing the energetics for OER intermediates based on density functional theory simulations; and iv) Ce(OH) 3 embedding for efficacious oxygen ion exchange and electronic transmission, the electrode exhibits remarkable OER activity with a very low overpotential of 158 mV at 10 mA cm −2 and Tafel slope of 27 mV dec −1, which outperform almost all OER electrocatalysts.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

          Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

            A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts.

              Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Energy Materials
                Advanced Energy Materials
                Wiley
                1614-6832
                1614-6840
                July 2021
                June 10 2021
                July 2021
                : 11
                : 28
                Affiliations
                [1 ] Key Laboratory of Automobile Materials (Jilin University) Ministry of Education, and School of Materials Science and Engineering Jilin University Changchun 130022 China
                Article
                10.1002/aenm.202101266
                eef38e0e-aee6-4777-ac37-e84f7b9e5740
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content427

                Cited by23

                Most referenced authors1,292