39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Regions Responsible for Tinnitus Distress and Loudness: A Resting-State fMRI Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Subjective tinnitus is characterized by the perception of phantom sound without an external auditory stimulus. We hypothesized that abnormal functionally connected regions in the central nervous system might underlie the pathophysiology of chronic subjective tinnitus. Statistical significance of functional connectivity (FC) strength is affected by the regional autocorrelation coefficient (AC). In this study, we used resting-state functional MRI (fMRI) and measured regional mean FC strength (mean cross-correlation coefficient between a region and all other regions without taking into account the effect of AC ( rGC) and with taking into account the effect of AC ( rGCa) to elucidate brain regions related to tinnitus symptoms such as distress, depression and loudness. Consistent with previous studies, tinnitus loudness was not related to tinnitus-related distress and depressive state. Although both rGC and rGCa revealed similar brain regions where the values showed a statistically significant relationship with tinnitus-related symptoms, the regions for rGCa were more localized and more clearly delineated the regions related specifically to each symptom. The rGCa values in the bilateral rectus gyri were positively correlated and those in the bilateral anterior and middle cingulate gyri were negatively correlated with distress and depressive state. The rGCa values in the bilateral thalamus, the bilateral hippocampus, and the left caudate were positively correlated and those in the left medial superior frontal gyrus and the left posterior cingulate gyrus were negatively correlated with tinnitus loudness. These results suggest that distinct brain regions are responsible for tinnitus symptoms. The regions for distress and depressive state are known to be related to depression, while the regions for tinnitus loudness are known to be related to the default mode network and integration of multi-sensory information.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.

          Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Competition between functional brain networks mediates behavioral variability.

            Increased intraindividual variability (IIV) is a hallmark of disorders of attention. Recent work has linked these disorders to abnormalities in a "default mode" network, comprising brain regions routinely deactivated during goal-directed cognitive tasks. Findings from a study of the neural basis of attentional lapses suggest that a competitive relationship between the "task-negative" default mode network and regions of a "task-positive" attentional network is a potential locus of dysfunction in individuals with increased IIV. Resting state studies have shown that this competitive relationship is intrinsically represented in the brain, in the form of a negative correlation or antiphase relationship between spontaneous activity occurring in the two networks. We quantified the negative correlation between these two networks in 26 subjects, during active (Eriksen flanker task) and resting state scans. We hypothesized that the strength of the negative correlation is an index of the degree of regulation of activity in the default mode and task-positive networks and would be positively related to consistent behavioral performance. We found that the strength of the correlation between the two networks varies across individuals. These individual differences appear to be behaviorally relevant, as interindividual variation in the strength of the correlation was significantly related to individual differences in response time variability: the stronger the negative correlation (i.e., the closer to 180 degrees antiphase), the less variable the behavioral performance. This relationship was moderately consistent across resting and task conditions, suggesting that the measure indexes moderately stable individual differences in the integrity of functional brain networks. We discuss the implications of these findings for our understanding of the behavioral significance of spontaneous brain activity, in both healthy and clinical populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stereotaxic display of brain lesions.

              Traditionally lesion location has been reported using standard templates, text based descriptions or representative raw slices from the patient's CT or MRI scan. Each of these methods has drawbacks for the display of neuroanatomical data. One solution is to display MRI scans in the same stereotaxic space popular with researchers working in functional neuroimaging. Presenting brains in this format is useful as the slices correspond to the standard anatomical atlases used by neuroimagers. In addition, lesion position and volume are directly comparable across patients. This article describes freely available software for presenting stereotaxically aligned patient scans. This article focuses on MRI scans, but many of these tools are also applicable to other modalities (e.g. CT, PET and SPECT). We suggest that this technique of presenting lesions in terms of images normalized to standard stereotaxic space should become the standard for neuropsychological studies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                25 June 2013
                : 8
                : 6
                : e67778
                Affiliations
                [1 ]Department of Anatomy and Cell Biology, Graduate School of Wakayama Medical University, Wakayama, Japan
                [2 ]Department of System Neurophysiology, Graduate School of Wakayama Medical University, Wakayama, Japan
                [3 ]Department of Neuropsychiatry, Graduate School of Wakayama Medical University, Wakayama, Japan
                [4 ]Department of Otolaryngology-Head and Neck Surgery, Graduate School of Wakayama Medical University, Wakayama, Japan
                [5 ]Wakayama-Minami Radiology Clinic, Wakayama, Japan
                Yale University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TU YK. Performed the experiments: TU SU YI MH NY KS MT. Analyzed the data: TU TD YK. Contributed reagents/materials/analysis tools: TD YK. Wrote the paper: TU TD YK.

                Article
                PONE-D-12-30690
                10.1371/journal.pone.0067778
                3692468
                23825684
                eede239e-695e-401c-af41-a70f922b3de0
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 October 2012
                : 27 May 2013
                Page count
                Pages: 12
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Biology
                Neuroscience
                Neuroimaging
                Fmri
                Medicine
                Anatomy and Physiology
                Neurological System
                Nervous System Physiology
                Mental Health
                Psychiatry
                Neuropsychiatric Disorders
                Otorhinolaryngology
                Audiology
                Radiology
                Diagnostic Radiology
                Magnetic Resonance Imaging

                Uncategorized
                Uncategorized

                Comments

                Comment on this article