57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Untangling aerosol effects on clouds and precipitation in a buffered system

      ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is thought that changes in the concentration of cloud-active aerosol can alter the precipitation efficiency of clouds, thereby changing cloud amount and, hence, the radiative forcing of the climate system. Despite decades of research, it has proved frustratingly difficult to establish climatically meaningful relationships among the aerosol, clouds and precipitation. As a result, the climatic effect of the aerosol remains controversial. We propose that the difficulty in untangling relationships among the aerosol, clouds and precipitation reflects the inadequacy of existing tools and methodologies and a failure to account for processes that buffer cloud and precipitation responses to aerosol perturbations.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosols, climate, and the hydrological cycle.

          Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global indirect aerosol effects: a review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flood or drought: how do aerosols affect precipitation?

              Aerosols serve as cloud condensation nuclei (CCN) and thus have a substantial effect on cloud properties and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease and increase rainfall as a result of their radiative and CCN activities. At one extreme, pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds. On the other hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can form at all given the reduced surface heating resulting from the aerosol haze layer. We propose a conceptual model that explains this apparent dichotomy.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                October 2009
                October 2009
                : 461
                : 7264
                : 607-613
                Article
                10.1038/nature08281
                19794487
                eed6cf5b-b612-4861-b5ae-d38a626456aa
                © 2009

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article