38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetics of isoniazid, rifampicin, pyrazinamide and ethambutol in Indian children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The available pharmacokinetic data on anti-tubercular drugs in children raises the concern of suboptimal plasma concentrations attained when doses extrapolated from adult studies are used. Also, there is lack of consensus regarding the effect of malnutrition on pharmacokinetics of anti-tubercular drugs in children. We conducted this study with the aims of determining the plasma concentrations of isoniazid, rifampicin, pyrazinamide and ethambutol achieved with different dosage of the anti-tubercular drugs so as to provide supportive evidence to the revised dosages and to evaluate the effects of malnutrition on the pharmacokinetics of these drugs in children. We also attempted to correlate the plasma concentrations of these drugs with clinical outcome of therapy.

          Method

          Prospective drug estimation study was conducted in two groups of children, age 6 months to 15 years, with tuberculosis, with or without severe malnutrition, receiving different dosage of daily anti- tubercular therapy. The dosage (range) of isoniazid was 5 (4-6) and 10 (7-15) mg/kg in the two groups, respectively, that of rifampicin-10 (8–12) and 15 (10–12) mg/kg, respectively, both the groups received same dose of pyrazinamide (30–35 mg/kg) and ethambutol (20–25 mg/kg). All four drugs were simultaneously estimated by liquid chromatography-mass spectrometry (LC-MS/MS).

          Results and conclusion

          The median (IQR) C max of isoniazid increased significantly from 0.6 (0.3,1.2) μg/mL to 3.4 (1.8, 5.0) μg/mL with increase in the dose. Plasma rifampicin concentrations increased only marginally on increasing the dose [median (IQR) C max: 10.4 (7.2, 13.9) μg/mL vs. 12.0 (6.1, 24.3) μg/mL, p = 0.08]. For ethambutol, 55.9% of the children had inadequate 2-hour concentrations. Two-hour plasma concentrations of at least one drug were low in 59 (92.2%) and 54 (85.7%) children in the two dosing regimen, respectively. We did not observe any effect of malnutrition on pharmacokinetic parameters of the drugs studied. We did not observe an association between low plasma drug concentrations and poor outcome. We may have to be cautious while increasing the doses and strive to asses other factors influencing the drug concentrations and treatment outcomes in children.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12879-015-0862-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Global tuberculosis report

          (2012)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic drug monitoring in the treatment of tuberculosis.

            C Peloquin (2001)
            Therapeutic drug monitoring (TDM) is a standard clinical technique used for many disease states, including many infectious diseases. As for these other conditions, the use of TDM in the setting of tuberculosis (TB) allows the clinician to make informed decisions regarding the timely adjustment of drug therapy. Such adjustments may not be required for otherwise healthy individuals who are responding to the standard, four-drug TB regimens. However, some patients are slow to respond to treatment, have drug-resistant TB, are at risk of drug-drug interactions or have concurrent disease states that significantly complicate the clinical situation. Such patients may benefit from TDM and early interventions may preclude the development of further drug resistance. It is not possible to collect multiple blood samples in the clinical setting for logistical and financial reasons. Therefore, one typically is limited to one or two time points. When only one sample can be obtained, the 2-hour post-dose concentrations of isoniazid, rifampin, pyrazinamide and ethambutol are usually most informative. Unfortunately, low 2-hour values do not distinguish between delayed absorption (late peak, close to normal range) and malabsorption (low concentrations at all time points). A second sample, often collected at 6-hour post-dose, can differentiate between these two scenarios. The second time point can also provide some information about clearance and half-life, assuming that drug absorption was nearly completed by 2 hours. TDM requires that samples are promptly centrifuged, and that the serum is promptly harvested and frozen. Isoniazid and ethionamide, in particular, are not stable in human serum at room temperature. Rifampin is stable for more than 6 hours under these conditions. During TB treatment, isoniazid causes the greatest early reduction in organisms and is considered to be one of the two most important TB drugs, along with rifampin. Although isoniazid is highly active against TB, low isoniazid concentrations were associated with poorer clinical and bacteriological outcomes in US Public Health Services (USPHS) TB Trial 22. Several earlier trials showed a clear dose-response for rifampin and pyrazinamide, so low concentrations for those two drugs also may correlate with poorer treatment outcomes. At least in USPHS TB Trial 22, the rifampin pharmacokinetic parameters were not predictive of the outcome variables. In contrast, low concentrations of unbound rifapentine may have been responsible, in part, for the worse-than-anticipated performance of this drug in clinical trials. The 'second-line' TB drugs, including p-aminosalicylic acid, cycloserine and ethionamide, are relatively weak TB drugs. Under the best conditions, treatment with these drugs takes over 2 years, as opposed to 6 to 9 months with isoniazid- and rifampin-containing regimens. Therefore, TB centres such as National Jewish Medical and Research Center in Denver, CO, USA, measure serum concentrations of the 'second-line' TB drugs early in the course of treatment. That way, poor drug absorption can be dealt with in a timely manner. This helps to minimise the time that patients are sputum smear- and culture-positive with multidrug-resistant TB, and may prevent the need for even longer treatment durations. Patients with HIV are at particular risk for drug-drug interactions. Because the published guidelines typically reflect interactions only between two drugs, these guidelines are of limited value when the patient is treated with three or more interacting drugs. Under such complicated circumstances, TDM often is the best available tool for sorting out these interactions and placing the patient the necessary doses that they require. TDM is only one part of the care of patients with TB. In isolation, it is of limited value. However, combined with clinical and bacteriological data, it can be a decisive tool, allowing the clinician to successfully treat even the most complicated TB patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Management of severe malnutrition: a manual for physicians and other senior health workers

              (1999)
                Bookmark

                Author and article information

                Contributors
                aparna.sinha.deb@gmail.com
                tvelpandian@hotmail.com
                ms2157@rediffmail.com
                kunwar.kanhiya@gmail.com
                skkabra@hotmail.com
                rakesh_lodha@hotmail.com
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                14 March 2015
                14 March 2015
                2015
                : 15
                : 126
                Affiliations
                [ ]Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
                [ ]Department of Ocular Pharmacology, All India Institute of Medical Sciences, New Delhi, India
                Article
                862
                10.1186/s12879-015-0862-7
                4373095
                25887748
                eeb1f2b3-6d3d-43c5-a357-5cc5661fdb14
                © Mukherjee et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 November 2014
                : 2 March 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Infectious disease & Microbiology
                tuberculosis,children,plasma concentrations,anti-tubercular therapy,malnutrition

                Comments

                Comment on this article