3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arbuscular Mycorrhizal Fungi Improve the Growth, Water Status, and Nutrient Uptake of Cinnamomum migao and the Soil Nutrient Stoichiometry under Drought Stress and Recovery

      , , , , , , , , ,
      Journal of Fungi
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drought greatly influences the growth and ecological stoichiometry of plants in arid and semi-arid regions such as karst areas, where Cinnamomum migao (C. migao) is an endemic tree species that is used as a bioenergy resource. Arbuscular mycorrhizal fungi (AMF) play a key role in nutrient uptake in the soil-plant continuum, increasing plant tolerance to drought. However, few studies have examined the contribution of AMF in improving the growth of C. migao seedlings and the soil nutrient stoichiometry under drought-stress conditions. A pot experiment was conducted under natural light in a plastic greenhouse to investigate the effects of individual inoculation and Co-inoculation of AMF [Funneliformis mosseae (F. mosseae) and Claroideoglomus etunicatum (C. etunicatum)] on the growth, water status, and nutrient uptake of C. migao as well as the soil nutrient stoichiometry under well-watered (WW) and drought-stress (DS) conditions. The results showed that compared with non-AMF control (CK), AM symbiosis significantly stimulated plant growth and had higher dry mass. Mycorrhizal plants had better water status than corresponding CK plants. AMF colonization notably increased the total nitrogen and phosphorus content of C. migao seedlings compared with CK. Mycorrhizal plants had higher leaf and stem total carbon concentrations than CK. The results indicated that AM symbiosis protects C. migao seedlings against drought stress by improving growth, water status, and nutrient uptake. In general, the C. migao seedlings that formed with C. etunicatum showed the most beneficial effect on plant growth, water status, and nutrient uptake among all treatments. In the future, we should study more about the biological characteristics of each AMF in the field study to understand more ecological responses of AMF under drought stress, which can better provide meaningful guidance for afforestation projects in karst regions.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: not found
          • Article: not found

          Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mycorrhizal ecology and evolution: the past, the present, and the future.

              Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
                Bookmark

                Author and article information

                Contributors
                Journal
                JFOUCU
                Journal of Fungi
                JoF
                MDPI AG
                2309-608X
                March 2023
                March 05 2023
                : 9
                : 3
                : 321
                Article
                10.3390/jof9030321
                ee925b3c-07b4-473f-af46-acd88fb76bb3
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                22
                0
                9
                0
                Smart Citations
                22
                0
                9
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content209

                Cited by4

                Most referenced authors1,402