4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Machine learning integrated photocatalysis: progress and challenges

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By integrating machine learning with automation and robots, accelerated discovery of photocatalysts in the future could be envisioned.

          Abstract

          Discovering efficient photocatalysts has long been the goal of photocatalysis, which has traditionally been driven by serendipitous or try-and-error strategies. Recent developments in photocatalysis integrated with machine learning techniques promise to accelerate the discovery of photocatalysts, but are also facing significant challenges. In this review, advances in machine learning integrated photocatalysis are first presented from the perspective of three main photocatalytic processes: light harvesting, charge generation and separation, and surface redox reactions. Next, progress in using machine learning to understand complex photoactivity–structure relationships and identify the factors governing activity follows. A future photocatalysis paradigm is then provided with the integration of artificial intelligence, robots and automation. Lastly, we discuss the current challenges in machine learning integrated photocatalysis. This review aims to provide a systematic overview and guidelines to the broad scientific community interested in photocatalysis and artificial intelligence for solar fuel synthesis.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Highly accurate protein structure prediction with AlphaFold

          Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1 – 4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6 , 7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10 – 14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. AlphaFold predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Electrochemical Photolysis of Water at a Semiconductor Electrode

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A metal-free polymeric photocatalyst for hydrogen production from water under visible light.

              The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.
                Bookmark

                Author and article information

                Contributors
                Journal
                CHCOFS
                Chemical Communications
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                May 11 2023
                2023
                : 59
                : 39
                : 5795-5806
                Affiliations
                [1 ]Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua 321004, China
                Article
                10.1039/D3CC00989K
                ee75c669-ceb5-43a8-b851-17f89417986f
                © 2023

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article