40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species.

      1
      Annual review of plant physiology and plant molecular biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The production of reactive oxygen species (ROS), such as O2- and H2O2, is an unavoidable consequence of aerobic metabolism. In plant cells the mitochondrial electron transport chain (ETC) is a major site of ROS production. In addition to complexes I-IV, the plant mitochondrial ETC contains a non-proton-pumping alternative oxidase as well as two rotenone-insensitive, non-proton-pumping NAD(P)H dehydrogenases on each side of the inner membrane: NDex on the outer surface and NDin on the inner surface. Because of their dependence on Ca2+, the two NDex may be active only when the plant cell is stressed. Complex I is the main enzyme oxidizing NADH under normal conditions and is also a major site of ROS production, together with complex III. The alternative oxidase and possibly NDin(NADH) function to limit mitochondrial ROS production by keeping the ETC relatively oxidized. Several enzymes are found in the matrix that, together with small antioxidants such as glutathione, help remove ROS. The antioxidants are kept in a reduced state by matrix NADPH produced by NADP-isocitrate dehydrogenase and non-proton-pumping transhydrogenase activities. When these defenses are overwhelmed, as occurs during both biotic and abiotic stress, the mitochondria are damaged by oxidative stress.

          Related collections

          Author and article information

          Journal
          Annu Rev Plant Physiol Plant Mol Biol
          Annual review of plant physiology and plant molecular biology
          Annual Reviews
          1040-2519
          1040-2519
          Jun 2001
          : 52
          Affiliations
          [1 ] Department of Plant Physiology, Lund University, Lund, Box 117, S-221 00 Sweden;, Plant Biology and Biogeochemistry Department, Riso National Laboratory, Building 301, P.O. Box 49, DK-4000 Roskilde, Denmark; e-mail: ian.max.moller@risoe.dk
          Article
          52/1/561
          10.1146/annurev.arplant.52.1.561
          11337409
          ee662786-4b94-47bf-82b2-c90c0453b8fc
          History

          Comments

          Comment on this article