4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The proliferation effects of fluoxetine and amitriptyline on human breast cancer cells and the underlying molecular mechanisms

      , , , , ,
      Environmental Toxicology and Pharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation.

          We measured concentrations of 56 active pharmaceutical ingredients (APIs) in effluent samples from 50 large wastewater treatment plants across the US. Hydrochlorothiazide was found in every sample. Metoprolol, atenolol, and carbamazepine were found in over 90% of the samples. Valsartan had the highest concentration (5300 ng/L), and also had the highest average concentration (1600 ng/L) across all 50 samples. Estimates of potential risks to healthy human adults were greatest for six anti-hypertensive APIs (lisinopril, hydrochlorothiazide, valsartan, atenolol, enalaprilat, and metoprolol), but nevertheless suggest risks of exposure to individual APIs as well as their mixtures are generally very low. Estimates of potential risks to aquatic life were also low for most APIs, but suggest more detailed study of potential ecological impacts from four analytes (sertraline, propranolol, desmethylsertraline, and valsartan).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of GPR30 inhibits growth of prostate cancer cells via sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G2 cell-cycle arrest

            G protein–coupled receptor 30 (GPR30) exhibits estrogen-binding affinity and mediates nongenomic signaling of estrogen to regulate cell growth. We here demonstrated for the first time, in contrast to the reported promoting action of GPR30 on the growth of breast and ovarian cancer cells, that activation of GPR30 by the receptor-specific, non-estrogenic ligand G-1 inhibited growth of androgen-dependent and -independent prostate cancer (PCa) cells in vitro and PC-3 xenografts in vivo. However, G-1 elicited no growth or histological changes in the prostates of intact mice and did not inhibit growth in quiescent BPH-1, an immortalized benign prostatic epithelial cell line. Treatment of PC-3 cells with G-1-induced cell-cycle arrest at the G2 phase and reduced the expression of G2-checkpoint regulators (cyclin A2, cyclin B1, cdc25c, and cdc2) and the phosphorylation of their common transcriptional regulator NF-YA in PC-3 cells. With the extensive use of siRNA knockdown experiments and the MEK inhibitor PD98059 in the present study, we dissected the mechanism underlying G-1–induced inhibition of PC-3 cell growth, which was mediated through GPR30, followed by a sustained activation of Erk1/2 and a c-jun/c-fos-dependent upregulation of p21, resulting in the arrest of PC-3 growth at the G2 phase. The discovery of this signaling pathway lays the foundation for future development of GPR30-based therapies for PCa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives.

              Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial hypertension and heart failure through the stimulation of Nox expression.
                Bookmark

                Author and article information

                Journal
                Environmental Toxicology and Pharmacology
                Environmental Toxicology and Pharmacology
                Elsevier BV
                13826689
                April 2021
                April 2021
                : 83
                : 103586
                Article
                10.1016/j.etap.2021.103586
                33460806
                ee514968-083f-49f6-80dd-e0d037502ea3
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article