Down’s syndrome (DS) is a developmental disorder associated with intellectual disability (ID). We have previously shown that people with DS engage in very low levels of exercise compared to people with ID not due to DS. Many aspects of the DS phenotype, such as dementia, low activity levels and poor muscle tone, are shared with disorders of mitochondrial origin, and mitochondrial dysfunction has been demonstrated in cultured DS tissue. We undertook a phosphorus magnetic resonance spectroscopy ( 31P-MRS) study in the quadriceps muscle of 14 people with DS and 11 non-DS ID controls to investigate the post-exercise resynthesis kinetics of phosphocreatine (PCr), which relies on mitochondrial respiratory function and yields a measure of muscle mitochondrial function in vivo. We found that the PCr recovery rate constant was significantly decreased in adults with DS compared to non-DS ID controls (1.7±0.1 min −1 vs 2.1±0.1 min −1 respectively) who were matched for physical activity levels, indicating that muscle mitochondrial function in vivo is impaired in DS. This is the first study to investigate mitochondrial function in vivo in DS using 31P-MRS. Our study is consistent with previous in vitro studies, supporting a theory of a global mitochondrial defect in DS.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.